mitochondrial inheritance
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 16)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
Heidi L. Anderson ◽  
Jason C. Casler ◽  
Laura L. Lackner

Positioning organelles at the right place and time is critical for their function and inheritance. In budding yeast, mitochondrial and nuclear positioning require the anchoring of mitochondria and dynein to the cell cortex by clusters of Num1. We have previously shown that mitochondria drive the assembly of cortical Num1 clusters, which then serve as anchoring sites for mitochondria and dynein. When mitochondrial inheritance is inhibited, mitochondrial-driven assembly of Num1 in buds is disrupted and defects in dynein-mediated spindle positioning are observed. Using a structure-function approach to dissect the mechanism of mitochondria-dependent dynein anchoring, we found the EF hand-like motif (EFLM) of Num1 and its ability to bind calcium are required to bias dynein anchoring on mitochondria-associated Num1 clusters. Consistently, when the EFLM is disrupted, we no longer observe defects in dynein activity following inhibition of mitochondrial inheritance. Thus, the Num1 EFLM functions to bias dynein anchoring and activity in nuclear inheritance subsequent to mitochondrial inheritance. We hypothesize that this hierarchical integration of organelle positioning pathways by the Num1 EFLM contributes to the regulated order of organelle inheritance during the cell cycle.


2021 ◽  
pp. 233-237
Author(s):  
Ralitza H. Gavrilova

The human genome consists of approximately 22,000 genes that are encoded within the nuclear DNA and embedded in the chromosome. Mitochondria are the only cytoplasmic organelles that have their own DNA. Nuclear gene disorders and mitochondrial inheritance are discussed in this chapter. Nuclear gene disorders follow the patterns of inheritance originally described by Gregor Mendel. They often are referred to as single-gene disorders because 1 or more alleles of only 1 locus are the major determinants of phenotype.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Pavla Tůmová ◽  
Luboš Voleman ◽  
Andreas Klingl ◽  
Eva Nohýnková ◽  
Gerhard Wanner ◽  
...  

Abstract Background The presence of mitochondria is a distinguishing feature between prokaryotic and eukaryotic cells. It is currently accepted that the evolutionary origin of mitochondria coincided with the formation of eukaryotes and from that point control of mitochondrial inheritance was required. Yet, the way the mitochondrial presence has been maintained throughout the eukaryotic cell cycle remains a matter of study. Eukaryotes control mitochondrial inheritance mainly due to the presence of the genetic component; still only little is known about the segregation of mitochondria to daughter cells during cell division. Additionally, anaerobic eukaryotic microbes evolved a variety of genomeless mitochondria-related organelles (MROs), which could be theoretically assembled de novo, providing a distinct mechanistic basis for maintenance of stable mitochondrial numbers. Here, we approach this problem by studying the structure and inheritance of the protist Giardia intestinalis MROs known as mitosomes. Results We combined 2D stimulated emission depletion (STED) microscopy and focused ion beam scanning electron microscopy (FIB/SEM) to show that mitosomes exhibit internal segmentation and conserved asymmetric structure. From a total of about forty mitosomes, a small, privileged population is harnessed to the flagellar apparatus, and their life cycle is coordinated with the maturation cycle of G. intestinalis flagella. The orchestration of mitosomal inheritance with the flagellar maturation cycle is mediated by a microtubular connecting fiber, which physically links the privileged mitosomes to both axonemes of the oldest flagella pair and guarantees faithful segregation of the mitosomes into the daughter cells. Conclusion Inheritance of privileged Giardia mitosomes is coupled to the flagellar maturation cycle. We propose that the flagellar system controls segregation of mitochondrial organelles also in other members of this supergroup (Metamonada) of eukaryotes and perhaps reflects the original strategy of early eukaryotic cells to maintain this key organelle before mitochondrial fusion-fission dynamics cycle as observed in Metazoa was established.


2021 ◽  
Vol 8 ◽  
Author(s):  
Brahim Tabarki ◽  
Wejdan Hakami ◽  
Nader Alkhuraish ◽  
Kalthoum Tlili-Graies ◽  
Majid Alfadhel

Previous reviews have described the features of brain involvement in pediatric-onset metabolic disorders with Mendelian and mitochondrial inheritance, but only a few have focused on spinal cord abnormalities. An increasing number of metabolic disorders with Mendelian and mitochondrial inheritance in children with predominant spinal cord involvement has been recognized. Spinal cord involvement may be isolated or may occur more frequently with brain involvement. Timely diagnosis and occasional genetic counseling are needed for timely therapy. Therefore, clinicians must be aware of the clinical, laboratory, and radiographic features of these disorders. In this review, we describe pediatric-onset metabolic disorders with Mendelian and mitochondrial inheritance and predominant spinal cord involvement. Furthermore, we provide an overview of these conditions, including background information and examples that require rapid identification, focusing on treatable conditions; that would be catastrophic if they are not recognized.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 743 ◽  
Author(s):  
Amber R. Matha ◽  
Xiaorong Lin

The mitochondrion is a vital organelle in most eukaryotic cells. It contains its own DNA which differs from nuclear DNA, since it is often inherited from only one parent during sexual reproduction. In anisogamous mammals, this is largely due to the fact that the oocyte has over 1000 times more copies of mitochondrial DNA than the sperm. However, in the isogamous fungus Cryptococcus neoformans, uniparental mitochondrial inheritance (UMI) still occurs during sexual reproduction. It is proposed that UMI might have evolved in the last common ancestor of eukaryotes. Thus, understanding the fundamental process of UMI in lower eukaryotes may give insights into how the process might have evolved in eukaryotic ancestors. In this review, we discuss the current knowledge regarding the cellular features as well as the molecular underpinnings of UMI in Cryptococcus during the mating process, and open questions that need to be answered to solve the mystery of UMI in this eukaryotic microbe.


2020 ◽  
Vol 21 (11) ◽  
pp. 3883 ◽  
Author(s):  
Hector Mendoza ◽  
Michael H. Perlin ◽  
Jan Schirawski

Mitochondria are important organelles in eukaryotes that provide energy for cellular processes. Their function is highly conserved and depends on the expression of nuclear encoded genes and genes encoded in the organellar genome. Mitochondrial DNA replication is independent of the replication control of nuclear DNA and as such, mitochondria may behave as selfish elements, so they need to be controlled, maintained and reliably inherited to progeny. Phytopathogenic fungi meet with special environmental challenges within the plant host that might depend on and influence mitochondrial functions and services. We find that this topic is basically unexplored in the literature, so this review largely depends on work published in other systems. In trying to answer elemental questions on mitochondrial functioning, we aim to introduce the aspect of mitochondrial functions and services to the study of plant-microbe-interactions and stimulate phytopathologists to consider research on this important organelle in their future projects.


2020 ◽  
Vol 401 (6-7) ◽  
pp. 779-791 ◽  
Author(s):  
Till Klecker ◽  
Benedikt Westermann

AbstractMitochondria are essential organelles of virtually all eukaryotic organisms. As they cannot be made de novo, they have to be inherited during cell division. In this review, we provide an overview on mitochondrial inheritance in Saccharomyces cerevisiae, a powerful model organism to study asymmetric cell division. Several processes have to be coordinated during mitochondrial inheritance: mitochondrial transport along the actin cytoskeleton into the emerging bud is powered by a myosin motor protein; cell cortex anchors retain a critical fraction of mitochondria in the mother cell and bud to ensure proper partitioning; and the quantity of mitochondria inherited by the bud is controlled during cell cycle progression. Asymmetric division of yeast cells produces rejuvenated daughter cells and aging mother cells that die after a finite number of cell divisions. We highlight the critical role of mitochondria in this process and discuss how asymmetric mitochondrial partitioning and cellular aging are connected.


2019 ◽  
Vol 218 (11) ◽  
pp. 3560-3571 ◽  
Author(s):  
Leeba Ann Chacko ◽  
Kritika Mehta ◽  
Vaishnavi Ananthanarayanan

During sexual reproduction in eukaryotes, processes such as active degradation and dilution of paternal mitochondria ensure maternal mitochondrial inheritance. In the isogamous organism fission yeast, we employed high-resolution fluorescence microscopy to visualize mitochondrial inheritance during meiosis by differentially labeling mitochondria of the two parental cells. Remarkably, mitochondria, and thereby mitochondrial DNA from the parental cells, did not mix upon zygote formation but remained segregated at the poles by attaching to clusters of the anchor protein Mcp5 via its coiled-coil domain. We observed that this tethering of parental mitochondria to the poles results in uniparental inheritance of mitochondria, wherein two of the four spores formed subsequently contained mitochondria from one parent and the other spores contained mitochondria from the other parent. Further, the presence of dynein on an Mcp5 cluster precluded the attachment of mitochondria to the same cluster. Taken together, we reveal a distinct mechanism that achieves uniparental inheritance by segregation of parental mitochondria.


2019 ◽  
Vol 380 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Dalen Zuidema ◽  
Peter Sutovsky

Sign in / Sign up

Export Citation Format

Share Document