actin networks
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 146)

H-INDEX

57
(FIVE YEARS 11)

2021 ◽  
Author(s):  
Christina Jayachandran ◽  
Arindam Ghosh ◽  
Meenakshi Prabhune ◽  
Jonathan Bath ◽  
Andrew J. Turberfield ◽  
...  

Mechanical forces are relevant for many biological processes, from wound healing or tumour formation to cell migration and differentiation. Cytoskeletal actin is largely responsible for responding to forces and transmitting them in cells, while also maintaining cell shape and integrity. Here, we describe a novel approach to employ a FRET-based DNA force sensor in vitro and in cellulo for non-invasive optical monitoring of intracellular mechanical forces. We use fluorescence lifetime imaging to determine the FRET efficiency of the sensor, which makes the measurement robust against intensity variations. We demonstrate the applicability of the sensor by monitoring cross-linking activity in in vitro actin networks by bulk rheology and confocal microscopy. We further demonstrate that the sensor readily attaches to stress fibers in living cells which opens up the possibility of live-cell force measurements.


2021 ◽  
Author(s):  
Lin Mei ◽  
Matthew J Reynolds ◽  
Damien Garbett ◽  
Rui Gong ◽  
Tobias Meyer ◽  
...  

To fulfill the cytoskeleton's diverse functions in cell mechanics and motility, actin networks with specialized architectures are built by crosslinking proteins, which bridge filaments to control micron-scale network geometry through nanoscale binding interactions via poorly defined structural mechanisms. Here, we introduce a machine-learning enabled cryo-EM pipeline for visualizing active crosslinkers, which we use to analyze human T-plastin, a member of the evolutionarily ancient plastin/fimbrin family of tandem calponin-homology domain (CHD) proteins. We define a sequential bundling mechanism which enables T-plastin to bridge filaments in both parallel and anti-parallel orientations. Our structural, biochemical, and cell biological data highlight inter-CHD linkers as key structural elements underlying flexible but stable crosslinking which are likely to be disrupted by mutations causing hereditary bone diseases. Beyond revealing how plastins are evolutionary optimized to crosslink dense actin networks with mixed polarity, our cryo-EM workflow will broadly enable analysis of the structural mechanisms underlying cytoskeletal network construction.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009240
Author(s):  
Ondrej Maxian ◽  
Raúl P. Peláez ◽  
Alex Mogilner ◽  
Aleksandar Donev

Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.


2021 ◽  
Author(s):  
Anne Bourdais ◽  
Benoit Dehapiot ◽  
Guillaume Halet

How multiple actin networks coexist in a common cytoplasm, while competing for a shared pool of monomers, is still an ongoing question. This is exemplified by meiotic maturation in the mouse oocyte, which relies on the dynamic remodeling of distinct cortical and cytoplasmic F-actin networks. Here we show that the conserved actin-depolymerizing factor cofilin is activated in a switch-like manner at meiosis resumption from prophase arrest. Interfering with cofilin activation during maturation resulted in widespread microvilli elongation, while cytoplasmic F-actin was depleted, leading to defects in spindle migration and polar body extrusion. In contrast, cofilin inactivation in metaphase II-arrested oocytes resulted in a shutdown of F-actin dynamics, along with a dramatic overgrowth of the polarized actin cap. However, inhibition of the Arp2/3 complex to promote actin cap disassembly elicited ectopic microvilli outgrowth in the polarized cortex. These data establish cofilin as a key player in actin network homeostasis in oocytes, and reveal that microvilli can act as a sink for monomers upon disassembly of a competing network.


2021 ◽  
Author(s):  
Yue Qu ◽  
Juliana Alves-Silva ◽  
Kriti Gupta ◽  
Ines Hahn ◽  
Jill Parkin ◽  
...  

Axons are the long and slender processes of neurons constituting the biological cables that wire the nervous system. The growth and maintenance of axons require bundles of microtubules that extend through their entire length. Understanding microtubule regulation is therefore an essential aspect of axon biology. Key regulators of neuronal microtubules are the spectraplakins, a well-conserved family of cytoskeletal cross-linkers that underlie neuropathies in mouse and humans. Spectraplakin deficiency in mouse or Drosophila causes severe decay of microtubule bundles and axon growth inhibition. The underlying mechanisms are best understood for Drosophila Short stop (Shot) and believed to involve cytoskeletal cross-linkage: the N-terminal calponin homology (CH) domains bind to F-actin, and the C-terminus to microtubules and Eb1. Here we have gained new understanding by showing that the F-actin interaction must be finely balanced: altering the properties of F-actin networks or deleting/exchanging Shot's CH domains induces changes in Shot function - with a Lifeact-containing Shot variant causing remarkable remodelling of neuronal microtubules. In addition to actin-MT cross-linkage, we find strong indications that Shot executes redundant MT bundle-promoting roles that are F-actin-independent. We argue that these likely involve the neuronal Shot-PH isoform, which is characterised by a large, unexplored central plakin repeat region (PRR). Work on PRRs might therefore pave the way towards important new mechanisms of axon biology and architecture that might similarly apply to central PRRs in mammalian spectraplakins.


2021 ◽  
Author(s):  
Aravind Chandrasekaran ◽  
Akanni Clarke ◽  
Philip G. McQueen ◽  
Hsiao-Yu Fang ◽  
Garegin A Papoian ◽  
...  

Extensive studies of growing axons have revealed many individual components and protein interactions that guide neuronal morphogenesis. Despite this, however, we lack any clear picture of the emergent mechanism by which this nanometer-scale biochemistry generates the multi-micron scale morphology and cell biology of axon growth and guidance in vivo. To address this, we studied the downstream effects of the Abl signaling pathway using a computer simulation software (MEDYAN) that accounts for mechanochemical dynamics of active polymers. Previous studies implicate two Abl effectors, Arp2/3 and Enabled, in Abl-dependent axon guidance decisions. We now find that Abl alters actin architecture primarily by activating Arp2/3, while Enabled plays a more limited role. Our simulations show that simulations mimicking modest levels of Abl activity bear striking similarity to actin profiles obtained experimentally from live-imaging of actin in wild type axons in vivo. Using a graph-theoretical filament-filament contact analysis, moreover, we find that networks mimicking hyperactivity of Abl (enhanced Arp2/3) are fragmented into smaller domains of actin that interact weakly with each other, consistent with the pattern of actin fragmentation observed upon Abl overexpression in vivo. Two perturbative simulations further confirm that high Arp2/3 actin networks are mechanically disconnected and fail to mount a cohesive response to perturbation. Taken together, these data provide a molecular-level picture of how the large-scale organization of the axonal cytoskeleton arises from the biophysics of actin networks.


Author(s):  
Alexis M. Gautreau ◽  
Fred E. Fregoso ◽  
Gleb Simanov ◽  
Roberto Dominguez
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document