Cancer Cell Migration
Recently Published Documents


TOTAL DOCUMENTS

1474
(FIVE YEARS 736)

H-INDEX

75
(FIVE YEARS 34)

Author(s):  
Fujian Lu ◽  
Yunzhan Li ◽  
Shengchen Lin ◽  
Heping Cheng ◽  
Shengyu Yang

The store-operated calcium (Ca2+) entry (SOCE) is the Ca2+ entry mechanism used by cells to replenish depleted Ca2+ store. The dysregulation of SOCE has been reported in metastatic cancer. It is believed that SOCE promotes migration and invasion by remodeling the actin cytoskeleton and cell adhesion dynamics. There is recent evidence supporting that SOCE is critical for the spatial and the temporal coding of Ca2+ signals in the cell. In this review, we critically examined the spatiotemporal control of SOCE signaling and its implication in the specificity and robustness of signaling events downstream of SOCE, with a focus on the spatiotemporal SOCE signaling during cancer cell migration, invasion and metastasis. We further discuss the limitation of our current understanding of SOCE in cancer metastasis and potential approaches to overcome such limitation.


Author(s):  
Lennis Beatriz Orduña-Castillo ◽  
Jorge Eduardo del-Río-Robles ◽  
Irving García-Jiménez ◽  
César Zavala-Barrera ◽  
Yarely Mabell Beltrán-Navarro ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 12684
Author(s):  
Ikuko Kase-Kato ◽  
Shunichi Asai ◽  
Chikashi Minemura ◽  
Kenta Tsuneizumi ◽  
Sachi Oshima ◽  
...  

In humans, the coronin family is composed of seven proteins containing WD-repeat domains that regulate actin-based cellular processes. Some members of the coronin family are closely associated with cancer cell migration and invasion. The Cancer Genome Atlas (TCGA) analysis revealed that CORO1C, CORO2A, and CORO7 were significantly upregulated in oral squamous cell carcinoma (OSCC) tissues (p < 0.05). Moreover, the high expression of CORO2A was significantly predictive of the 5-year survival rate of patients with OSCC (p = 0.0203). Overexpression of CORO2A was detected in OSCC clinical specimens by immunostaining. siRNA-mediated knockdown of CORO2A suppressed cancer cell migration and invasion abilities. Furthermore, we investigated the involvement of microRNAs (miRNAs) in the molecular mechanism underlying CORO2A overexpression in OSCC cells. TCGA analysis confirmed that tumor-suppressive miR-125b-5p and miR-140-5p were significantly downregulated in OSCC tissues. Notably, these miRNAs bound directly to the 3′-UTR of CORO2A and controlled CORO2A expression in OSCC cells. In summary, we found that aberrant expression of CORO2A facilitates the malignant transformation of OSCC cells, and that downregulation of tumor-suppressive miRNAs is involved in CORO2A overexpression. Elucidation of the interaction between genes and miRNAs will help reveal the molecular pathogenesis of OSCC.


2021 ◽  
Author(s):  
Nut Pipatpanyanugoon ◽  
Nicha Wareesawetsuwan ◽  
Sunisa Prasopporn ◽  
Wannapan Poolex ◽  
Trairak Pisitkun ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3213
Author(s):  
Alessandra Ferraresi ◽  
Andrea Esposito ◽  
Carlo Girone ◽  
Letizia Vallino ◽  
Amreen Salwa ◽  
...  

Background Ovarian cancer progression and invasiveness are promoted by a range of soluble factors released by cancer cells and stromal cells within the tumor microenvironment. Our previous studies demonstrated that resveratrol (RV), a nutraceutical and caloric restriction mimetic with tumor-suppressive properties, counteracts cancer cell motility induced by stromal IL-6 by upregulating autophagy. Lysophosphatidic acid (LPA), a bioactive phospholipid that shows elevated levels in the tumor microenvironment and the ascites of ovarian cancers, stimulates the growth and tissue invasion of cancer cells. Whether LPA elicits these effects by inhibiting autophagy and through which pathway and whether RV can counteract the same remain obscure. Aims To investigate the molecular pathways involved in LPA-induced ovarian cancer malignancy, particularly focusing on the role of autophagy, and the ability of RV to counteract LPA activity. Results LPA stimulated while RV inhibited ovarian cancer cell migration. Transcriptomic and bioinformatic analyses showed an opposite regulation by LPA and RV of genes linked to epithelial-to-mesenchymal transition (EMT) and autophagy with involvement of the PI3K-AKT, JAK-STAT and Hedgehog (Hh) pathways. LPA upregulated the Hh and EMT members GLI1, BMI-1, SNAIL-1 and TWIST1 and inhibited autophagy, while RV did the opposite. Similar to the inhibitors of the Hh pathway, RV inhibited LPA-induced cancer cell migration and 3D growth of ovarian cancer cells. BMI-1 silencing prevented LPA-induced EMT, restored autophagy and hampered cell migration, resembling the effects of RV. TCGA data analyses indicated that patients with low expression of Hh/EMT-related genes together with active autophagy flux tended to have a better prognosis and this correlates with a more effective response to platinum therapy. In in vitro 3D spheroids, LPA upregulated BMI-1, downregulated autophagy and inhibited platinum toxicity while RV and Hh inhibitors restored autophagy and favored BAX-mediated cell death in response to platinum. Conclusions By inhibiting the Hh pathway and restoration of autophagy, RV counteracts LPA-induced malignancy, supporting its inclusion in the therapy of ovarian cancer for limiting metastasis and chemoresistance.


Sign in / Sign up

Export Citation Format

Share Document