biological macromolecule
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 23)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 12 (3) ◽  
pp. 445-460
Author(s):  
Qianrong Xiang ◽  
Zhuoxuan Wu ◽  
Er-Kang Tian ◽  
Shiqi Nong ◽  
Wen Liao ◽  
...  

In recent years, gold nanoparticles (GNPs) have gradually become a major choice of drug delivery cargoes due to unique properties. Compared to traditional bulk solid gold, GNPs have basic physical and chemical advantages, such as a larger surface area-to-volume ratio and easier surface modification. Furthermore, these have excellent biocompatibility, can induce the directional adsorption and enrichment of biological macromolecules, help retain biological macromolecule activity, and cause low harm to the human body. All these make GNPs good drug delivery cargoes. The present study introduces the properties of GNPs, including factors that affect the properties and synthesis. Then, focus was given on the application in drug delivery, not only on the molecular mechanism, but also on the clinical application. Furthermore, the properties and applications of peptide GNPs were also introduced. Finally, the challenges and prospects of GNPs for drug delivery were summarized.


2021 ◽  
Author(s):  
Shyam R. Khairkar ◽  
Shubham V. Pansare ◽  
Amol A. Shedge ◽  
Shraddha Chhatre ◽  
Dnyaneshwar K. Kulal ◽  
...  

AbstractChitosan biological macromolecule is a versatile polymer; chemical modification has been carried out that lead to the formation of chitosan grafted polymers composites (Chito-g-PC). We proposed synthesis of six various Chito-g-PC as sorbents for toxic dyes. A novel graft copolymerization method based on radical polymerization with vinyl monomer like acrylic acid, acrylamide, N-isopropylacrylamide, methacrylic acid and polyacrylonitrile were utilized in order to address the large amount of swelling at four different pH buffers solution. The effect of initiator and monomer concentration, time and temperature on % grafting and % grafting efficiency were performed. Comparative characterization of Chito and Chito-g-PC were evaluated by SEM, XRD and FTIR, as well as solubility characteristics of the composites were determined by various pH buffer solution. Cationic toxic dyes Malachite green (MG) and Methylene blue (MB) were selected as the sorbet, and Chito-g-PC were used as biosorbents. Thermodynamic analysis showed that the sorption process was spontaneous and endothermic with an increased randomness. The sorption experiments were realized with six different Chito-g-PC for MG and MB at various pH.


Author(s):  
Zhaoyue Lv ◽  
Yi Zhu ◽  
Feng Li

Nucleic acid-based drugs exhibited great potential in cancer therapeutics. However, the biological instability of nucleic acid-based drugs seriously hampered their clinical applications. Efficient in vivo delivery is the key to the clinical application of nucleic acid-based drugs. As a natural biological macromolecule, DNA has unique properties, such as excellent biocompatibility, molecular programmability, and precise assembly controllability. With the development of DNA nanotechnology, DNA nanomaterials have demonstrated significant advantages as delivery vectors of nucleic acid-based drugs by virtue of the inherent nucleic acid properties. In this study, the recent progress in the design of DNA-based nanomaterials for nucleic acid delivery is summarized. The DNA nanomaterials are categorized according to the components including pure DNA nanomaterials, DNA-inorganic hybrid nanomaterials, and DNA-organic hybrid nanomaterials. Representative applications of DNA nanomaterials in the controlled delivery of nucleic acid-based drugs are exemplified to show how DNA nanomaterials are rationally and exquisitely designed to address application issues in cancer therapy. At the end of this study, the challenges and future development of DNA nanomaterials are discussed.


2021 ◽  
Vol 65 (1) ◽  
pp. 1-3
Author(s):  
Dominika T. Gruszka

Abstract Biological processes are orchestrated by complex networks of molecules. Conventional approaches for studying the action of biomolecules operate on a population level, averaging out any inhomogeneities within the ensemble. Investigating one biological macromolecule at a time allows researchers to directly probe individual behaviours, and thus characterise the intrinsic molecular heterogeneity of the system. Single-molecule methods have unravelled unexpected modes of action for many seemingly well-characterised biomolecules and often proved instrumental in understanding the intricate mechanistic basis of biological processes. This collection of reviews aims to showcase how single-molecule techniques can be used to address important biological questions and to inspire biochemists to ‘zoom in’ to the population and probe individual molecular behaviours, beyond the ensemble average. Furthermore, this issue of Essays in Biochemistry is the very first written and edited entirely by early career researchers, and so it also highlights the strength, diversity and excellence of the younger generation single-molecule scientists who drive this exciting field of research forward.


2020 ◽  
Vol 164 ◽  
pp. 2329-2357
Author(s):  
Pathum Chandika ◽  
Seong-Yeong Heo ◽  
Tae-Hee Kim ◽  
Gun-Woo Oh ◽  
Geun-Hyeong Kim ◽  
...  

2020 ◽  
Vol 163 ◽  
pp. 298-308
Author(s):  
Tayebeh Fooladi ◽  
Mohammad Reza Soudi ◽  
Seyed Mahmoud Hashemi ◽  
Felipe Antonio Fernandes Antunes ◽  
Peyman Abdeshahian

Sign in / Sign up

Export Citation Format

Share Document