local wind
Recently Published Documents


TOTAL DOCUMENTS

386
(FIVE YEARS 86)

H-INDEX

29
(FIVE YEARS 3)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 62
Author(s):  
Elena Alekseenko ◽  
Bernard Roux ◽  
Konstantin Kuznetsov

The present study concerns the erosion and transport of severely contaminated sediments in a Canal. It begins in the context of an engineering project aimed to re-introduce a forced convection at the entrance of this Canal by pumping marine water. The local wind is often strong enough to overpass the resuspension threshold; thus, there is a serious risk of downstream contamination of a Mediterranean lagoon. So, the goal is to evaluate this risk as a function of the pumping rate; this contamination is transported by the fine suspended particles. Different scenarios are investigated to determine the downstream transport of suspensions in terms of runoff. These scenarios (of 24 h) contains a succession of 3 periods: constant wind speed, wind slowdown and calm, for two opposite wind directions. Special attention is devoted to the modeling of complex mechanisms of erosion and resuspension during wind periods, deposition during windless periods and sediment consolidation. The main results concern the total flux of the suspended particles through the exit of the Canal at the confluence with the lagoon. It is shown that even for moderate runoff (<6 m3/s) this total flux is large enough, not only during the wind period, but also after several hours of calm.


Ocean Science ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. 1815-1829
Author(s):  
Jan-Victor Björkqvist ◽  
Siim Pärt ◽  
Victor Alari ◽  
Sander Rikka ◽  
Elisa Lindgren ◽  
...  

Abstract. The classic characterisation of swell as regular, almost monochromatic, wave trains does not necessarily accurately describe swell in water bodies shielded from the oceanic wave climate. In such enclosed areas the locally generated swell waves still contribute to processes at the air and seabed interfaces, and their presence can be quantified by partitioning wave components based on their speed relative to the wind. We present swell statistics for the semi-enclosed Baltic Sea using 20 years of swell-partitioned model data. The swell significant wave height was mostly under 2 m, and in the winter (DJF) the mean significant swell height was typically less than 0.4 m; higher swell was found in limited nearshore areas. Swell waves were typically short (under 5 s), with mean periods over 8 s being rare. In open-sea areas the average ratio of swell energy (to total energy) was mostly below 0.4 – significantly less than in the World Ocean. Certain coastal areas were swell dominated over half the time, mostly because of weak winds (U<5 m s−1) rather than high swell heights. Swell-dominated events with a swell height over 1 m typically lasted under 10 h. A cross-correlation analysis indicates that swell in the open sea is mostly generated from local wind sea when wind decays (dominant time lag roughly 15 h). Near the coast, however, the results suggest that the swell is partially detached from the local wind waves, although not necessarily from the weather system that generates them because the highest swell typically arrives with a roughly 10 h delay after the low-pressure system has already passed.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1646
Author(s):  
Lu Wang ◽  
Jing Liu ◽  
Cunyan Jiang ◽  
Biao Li ◽  
Di Song ◽  
...  

Passages between buildings comprise the airflow path through the buildings, and the wind passage is often studied in terms of two buildings located parallel or at a certain angle. From the perspective of urban areas, the wind passage can be considered the series connection of all local wind passages between each row of buildings. Whether the central axis of each local wind passage is collinear or not, the wind passages of the building array can be summarized as distorted and streamlined types. Large-eddy simulations (LESs) are employed to assess the impacts of the above two wind passage types on the airflow and drag characteristics. The mean, unsteady flow fields and the drag distributions are discussed to assess the effects of wind passages types. Span-wise airflow was found in the wake region in the case of distorted wind passages (DWP), whereas the recirculating vortices dominated the wake region for the case of streamlined wind passages (SWP). Span-wise airflow enhanced the mean stream-wise velocity U and span-wise velocity U in the wake region, decreased U in the wind passage region, and increased dispersive stress 〈V˜2〉 and 〈U˜2〉 within the urban canopy and the peak Reynolds stress above the urban canopy. Further, it strengthened the individual drag forces of buildings and the fluctuations of span-wise and stream-wise individual drag forces. The air of DWP penetrated deeper than SWP. These findings provide theory and data support for better design of wind passages between buildings and may serve as a foundation for urban design and planning.


2021 ◽  
Vol 9 (12) ◽  
pp. 1390
Author(s):  
Xingkun Xu ◽  
Joey J. Voermans ◽  
Qingxiang Liu ◽  
Il-Ju Moon ◽  
Changlong Guan ◽  
...  

While sea spray can significantly impact air–sea heat fluxes, the effect of spray produced by the interaction of wind and waves is not explicitly addressed in current operational numerical models. In the present work, the thermal effects of the sea spray were investigated for an idealized tropical cyclone (TC) through the implementation of different sea spray models into a coupled air–sea–wave numerical system. Wave-Reynolds-dependent and wave-steepness-dependent sea spray models were applied to test the sensitivity of local wind, wave, and ocean fields of this TC system. Results show that while the sensible heat fluxes decreased by up to 231 W m−2 (364%) and 159 W m−2 (251%), the latent heat fluxes increased by up to 359 W m−2 (89%) and 263 W m−2 (76%) in the simulation period, respectively. This results in an increase of the total heat fluxes by up to 135 W m−2 (32%) and 123 W m−2 (30%), respectively. Based on different sea spray models, sea spray decreases the minimum sea level pressure by up to 7 hPa (0.7%) and 8 hPa (0.8%), the maximum wind speed increases by up to 6.1 m s−1 (20%) and 5.7 m s−1 (19%), the maximum significant wave height increases by up to 1.1 m (17%) and 1.6 m (25%), and the minimum sea surface temperature decreases by up to 0.2 °C (0.8%) and 0.15 °C (0.6%), respectively. As the spray has such significant impacts on atmospheric and oceanic environments, it needs to be included in TC forecasting models.


Author(s):  
Erik Prytula ◽  
Ann E McKellar ◽  
Larry Schwitters ◽  
Matthew W Reudink

Climate change has generated earlier springs, later falls and different weather patterns. These changes may prove challenging to migratory species if they are unable to adjust their migratory timing. We analyzed changes in migratory timing of Vaux’s Swifts (Chaetura vauxi Townsend 1839) by examining first arrivals (date the first swift arrived) and peak roost occupancy (date the maximum number of swifts were observed) at migratory roosts in both spring and fall from the citizen science organization Vaux’s Happening. First arrivals and peak occupancy date in Vaux’s Swifts advanced over time from 2008-2017, and the timing of first arrivals advanced with an increase in local wind gust speeds. In contrast, fall migration timing did not change over time from 2008-2016, but higher temperatures were associated with later fall migration (both first arrival and peak roost occupancy) and higher local wind speeds were associated with earlier fall migration (peak roost occupancy only). Like many other migratory birds, Vaux’s Swifts may be tracking earlier spring phenology, and may also be altering their migratory timing in response to local weather conditions, especially during fall migration. Our results indicate that swifts may be able to adjust their migration to a changing climate, at least in the short term.


2021 ◽  
Vol 13 (21) ◽  
pp. 4417
Author(s):  
Letian Wang ◽  
Min Zhang ◽  
Jiong Liu

A comprehensive electromagnetic scattering model for ship wakes on the sea surface is proposed to study the synthetic aperture radar (SAR) imagery for ship wakes. Our model considers a coupling of various wave systems, including Kelvin wake, turbulent wake, and the ocean ambient waves induced by the local wind. The fluid–structure coupling between the ship and the water surface is considered using the Reynolds–averaged Navier–Stokes (RANS) equation, and the wave–current effect between the ship wake and wind waves is considered using the wave modulation model. The scattering model can better describe the interaction of the ship wakes on sea surface and illustrates well the features of the ship wakes with local wind waves in SAR images.


2021 ◽  
Author(s):  
Marion Kersalé ◽  
Denis L. Volkov ◽  
Kandaga Pujiana ◽  
Hong Zhang

Abstract. The subtropical South Indian Ocean (SIO) has been described as one of the world's largest heat accumulators due to its remarkable warming during the past two decades. However, the relative contributions of the remote (of Pacific origin) forcing and local wind forcing to the variability of heat content and sea level in the SIO have not been fully attributed. Here, we combine a general circulation model, an analytic linear reduced gravity model, and observations to disentangle the spatial and temporal inputs of each forcing component on interannual to decadal timescales. A sensitivity experiment is conducted with artificially closed Indonesian straits to physically isolate the Indian and Pacific Oceans, thus, intentionally removing the Indonesian throughflow (ITF) influence on the Indian Ocean heat content and sea level variability. We show that the relative contribution of the signals originating in the equatorial Pacific versus signals caused by local wind forcing to the interannual variability of sea level and heat content in the SIO is dependent on location within the basin (low vs. mid latitude; western vs. eastern side of the basin). The closure of the ITF in the numerical experiment reduces the amplitude of interannual-to-decadal sea level changes compared to the simulation with a realistic ITF. However, the spatial and temporal evolution of sea level patterns in the two simulations remain similar and correlated with El Nino Southern Oscillation (ENSO). This suggests that these patterns are mostly determined by local wind forcing and oceanic processes, linked to ENSO via the ‘atmospheric bridge’ effect. We conclude that local wind forcing is an important driver for the interannual changes of sea level, heat content, and meridional transports in the SIO subtropical gyre, while oceanic signals originating in the Pacific amplify locally-forced signals.


2021 ◽  
Author(s):  
Dino Collalti ◽  
Eric Strobl

AbstractThis study investigates economic damage risk due to extreme rainfall during tropical storms in Jamaica. To this end, remote sensing precipitation data are linked to regional damage data for five storms. Extreme value modelling of precipitation is combined with an estimated damage function and satellite-derived nightlight intensity to estimate local risk in monetary terms. The results show that variation in maximum rainfall during a storm significantly contributes to parish level damages even after controlling for local wind speed. For instance, the damage risk for a 20 year rainfall event in Jamaica is estimated to be at least 238 million USD, i.e. about 1.5% of Jamaica’s yearly GDP.


2021 ◽  
Vol 19 ◽  
pp. 429-434
Author(s):  
Wolf-Gerrit Früh ◽  
◽  
Jamie Hillis ◽  
Sandy Gataora ◽  
Dawn Maskell

This paper presents an analysis of providing a typical distillery with low carbon energy through the combination of local wind energy, solar PV, electricity storage and heat storage. The aim of this is to increase the sustainability of the energyintensive whisky industry. Using hourly local renewable resource data and typical distillery consumption information, the local energy generation is balanced against the demand at the time of use. This followed by load shifting using a battery and heat storage. Results show that significant carbon savings can be achieved by a carefully designed portfolio of hybrid generation, battery storage and heat storage.


Sign in / Sign up

Export Citation Format

Share Document