vertical flow
Recently Published Documents


TOTAL DOCUMENTS

1126
(FIVE YEARS 288)

H-INDEX

54
(FIVE YEARS 12)

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3485
Author(s):  
Franck Michaël Zahui ◽  
Jean-Marie Pétémanagnan Ouattara ◽  
Mahamadou Kamagaté ◽  
Lacina Coulibaly ◽  
Alexandros I. Stefanakis

Bacteria are frequently studied due to their involvement in pollutants transformation processes during wastewater treatment. In this study, the treatment efficiency, bacteria densities and their vertical profile were investigated in pilot-scale vertical flow constructed wetlands (VFCW) planted with different plant species under a tropical climate in west Africa. Five beds were planted with local plant species, i.e., Andropogon gayanus, Chrysopogon zizanioides, Echinochloa pyramidalis, Pennisetum purpureum and Tripsacum laxum, while one bed remained unplanted. These species have been rarely used in CWs while some (e.g., T. laxum) are tested for the first time. After a 7-month trial, bacteria densities were measured in substrate samples separated into six layers along the bed depth. Plants presence enhanced the bacterial density and VFCW efficiency; the removal rates of organic matter (90.9–95.9%; COD and 95.2–98.5%; BOD5), nitrogen (74.3–84%; TN and 76–84%; NH4-N) and phosphorus (77.4–96.9%; PO4-P) were higher by 5.9–24.1% compared to the control bed, providing an overall excellent treatment performance for a single-stage VFCW system. Small numbers of anaerobic bacteria were obtained in the VFCWs, explaining the low-to-zero NO3-N removal, except for the VFCWs with T. laxum and P. purpureum. Aerobic bacteria decreased from the upper to bottom layers from 17.4 to 0.1 × 106 CFU/g in the planted beds, while anaerobic bacteria increased from 0.1 to 2.1 × 106 CFU/g. Anaerobic bacteria were more abundant in the unplanted than in the planted beds. The total bacteria count was dominated by aerobic bacteria, and decreased from the surface towards the bottom. Overall, the VFCW with P. purpureum demonstrated the highest efficiency, indicating that this design is an effective and sustainable nature-based solution for wastewater treatment in a tropical climate.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2200
Author(s):  
Georgios D. Gikas ◽  
Vassiliki A. Papaevangelou ◽  
Vassilios A. Tsihrintzis ◽  
Maria Antonopoulou ◽  
Ioannis K. Konstantinou

We assessed constructed wetland (CW) performance in the removal of six emerging pollutants (EPs) from university campus wastewater. The EPs considered were: diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP), bis(2-ehtylxexyl) phthalate (DEHP), tris(1-chloro-2-propyl) phosphate (TCPP) and caffeine (CAF). Six pilot-scale CWs, i.e., three horizontal subsurface flow (HSF) and three vertical flow (VF), with different design configurations were used: two types of plants and one unplanted for both the HSF and the VF, two hydraulic retention times (HRT) for the HSF, and two wastewater feeding strategies for the VF units. The results showed that the median removals in the three HSF-CWs ranged between 84.3 and 99.9%, 79.0 and 95.7%, 91.4 and 99.7%, 72.2 and 81.0%, 99.1 and 99.6%, and 99.3 and 99.6% for DEP, DIBP, DNOP, DEHP, TCPP, and CAF, respectively. In the three VF-CWs, the median removal efficiencies range was 98.6–99.4%, 63.6–98.0%, 96.6–97.8%, 73.6–94.5%, 99.3–99.5% and 94.4–96.3% for DEP, DIBP, DNOP, DEHP, TCPP and CAF, respectively. The study indicates that biodegradation and adsorption onto substrate were the most prevalent removal routes of the target EPs in CWs.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Patthara Kongsuphol ◽  
Huan Jia ◽  
Hoi Lok Cheng ◽  
Yue Gu ◽  
Bhuvaneshwari D/O Shunmuganathan ◽  
...  

Abstract Background Neutralizing antibodies (NAbs) prevent pathogens from infecting host cells. Detection of SARS-CoV-2 NAbs is critical to evaluate herd immunity and monitor vaccine efficacy against SARS-CoV-2, the virus that causes COVID-19. All currently available NAb tests are lab-based and time-intensive. Method We develop a 10 min cellulose pull-down test to detect NAbs against SARS-CoV-2 from human plasma. The test evaluates the ability of antibodies to disrupt ACE2 receptor—RBD complex formation. The simple, portable, and rapid testing process relies on two key technologies: (i) the vertical-flow paper-based assay format and (ii) the rapid interaction of cellulose binding domain to cellulose paper. Results Here we show the construction of a cellulose-based vertical-flow test. The developed test gives above 80% sensitivity and specificity and up to 93% accuracy as compared to two current lab-based methods using COVID-19 convalescent plasma. Conclusions A rapid 10 min cellulose based test has been developed for detection of NAb against SARS-CoV-2. The test demonstrates comparable performance to the lab-based tests and can be used at Point-of-Care. Importantly, the approach used for this test can be easily extended to test RBD variants or to evaluate NAbs against other pathogens.


2021 ◽  
Vol 33 (11) ◽  
pp. 113302
Author(s):  
Sira Saisorn ◽  
Adirek Suriyawong ◽  
Pochai Srithumkhant ◽  
Pakorn Wongpromma ◽  
Somchai Wongwises

Sign in / Sign up

Export Citation Format

Share Document