cardiac efficiency
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 19)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 242 ◽  
pp. 163
Author(s):  
Carolina Solis-Herrera ◽  
Yuejuan Qin ◽  
Henri Honka ◽  
Goeffrey Clarke ◽  
Curtis Triplitt ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3259
Author(s):  
Qutuba G. Karwi ◽  
Qiuyu Sun ◽  
Gary D. Lopaschuk

Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.


Author(s):  
Lars Rødland ◽  
Leif Rønning ◽  
Anders Benjamin Kildal ◽  
Ole-Jakob How

Excessive myocardial oxygen consumption (MVO2) is considered a limitation for catecholamines, termed oxygen cost of contractility. We hypothesize that increased MVO2 induced by dobutamine is not directly related to contractility but linked to intermediary myocardial metabolism. Furthermore, we hypothesize that selective β3 adrenergic receptor (β3AR) antagonism using L-748,337 prevents this. In an open-chest pig model, using general anesthesia, we assessed cardiac energetics, hemodynamics and arterial metabolic substrate levels at baseline, ½ hour and 6 hours after onset of drug infusion. Cardiac efficiency was assessed by relating MVO2 to left ventricular work (PVA; pressure–volume area). Three groups received dobutamine (5 μg/kg/min), dobutamine + L-748,337 (bolus 50 μg/kg), or saline for time-matched controls. Cardiac efficiency was impaired over time with dobutamine infusion, displayed by persistently increased unloaded MVO2 from ½ hour and 47% increase in the slope of the PVA–MVO2 relation after 6 hours. Contractility increased immediately with dobutamine infusion ( dP/ dt max; 1636 ± 478 vs 2888 ± 818 mmHg/s, P < 0.05) and persisted throughout the protocol (2864 ± 1055 mmHg/s, P < 0.05). Arterial free fatty acid increased gradually (0.22 ± 0.13 vs 0.39 ± 0.30 mM, P < 0.05) with peak levels after 6 hours (1.1 ± 0.4 mM, P < 0.05). By combining dobutamine with L-748,337 the progressive impairment in cardiac efficiency was attenuated. Interestingly, this combined treatment effect occurred despite similar alterations in cardiac inotropy and substrate supply. We conclude that the extent of cardiac inefficiency following adrenergic stimulation is dependent on the duration of drug infusion, and β3AR blockade may attenuate this effect.


2021 ◽  
Vol 42 (3) ◽  
pp. 035007
Author(s):  
Shi-Jiang Kuang ◽  
Qiu-Jin Xiao ◽  
Ming-Xing Kuang ◽  
Hui Zhao ◽  
Bing Li ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Keshav Gopal ◽  
Qutuba Karwi ◽  
Seyed Amirhossein Tabatabaei Dakhili ◽  
Riccardo Perfetti ◽  
Ravichandran Ramasamy ◽  
...  

Introduction: Diabetic Cardiomyopathy (DCM) is a major cause of death in people with type 2 diabetes (T2D). Alterations in cardiac energy metabolism including increased fatty acid oxidation rates and reduced glucose oxidation rates are key contributing factors to the development of DCM. Studies have shown that Aldose Reductase (AR), an enzyme activated under hyperglycemic conditions, can modulate myocardial glucose and fatty acid oxidation, and promotes cardiac dysfunction. Hypothesis: Pharmacological inhibition of AR using a next-generation inhibitor AT-001, can mitigate DCM in mice by modulating cardiac energy metabolism and improving cardiac efficiency. Methods: Male human AR overexpressing (hAR-Tg) and C57BL/6J (Control) mice were subjected to experimental T2D (high-fat diet [60% kcal from lard] for 10-wk with a single intraperitoneal streptozotocin injection of 75 mg/kg) and treated for the last 3-wk with AT-001 (40mg/kg/day) or vehicle via oral gavage. Cardiac energy metabolism and in vivo cardiac function were assessed via isolated working heart perfusions and ultrasound echocardiography, respectively. Results: AT-001 treatment significantly improved cardiac energetics in a murine model of DCM (hAR-Tg mice with T2D). Particularly, AT-001-treated mice exhibited decreased cardiac fatty acid oxidation rates compared to the vehicle-treated mice (342 ± 53 vs 964 ± 130 nmol/min/g dry wt.). Concurrently, there was a significant decrease in cardiac oxygen consumption in the AT-001-treated compared to the vehicle-treated mice (41 ± 12 vs 60 ± 11 μmol/min/g dry wt.), suggesting increased cardiac efficiency. Furthermore, treatment with AT-001 prevented cardiac structural and functional abnormalities present in DCM, including diastolic dysfunction as reflected by an increase in the tissue Doppler E’/A’ ratio and decrease in E/E’ ratio. Moreover, AT-001 treatment prevented cardiac hypertrophy as reflected by a decrease in LV mass in AT-001-treated mice. Conclusions: AR inhibition with AT-001 prevents cardiac structural and functional abnormalities in a mouse model of DCM, and normalizes cardiac energetics by shifting cardiac metabolism towards a non-diabetic metabolic state.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Petr Kala ◽  
Zuzana Honetschlagerova ◽  
Zuzana Huskova ◽  
Zdenka Vanourkova ◽  
Petra Škaroupková ◽  
...  

Introduction: There is a need to implement a preclinical model in addition to the well established ischemic or volume-overload models that would mimic the clinical course of patients with chemotherapy-induced heart failure. Doxorubicin is an anthracycline chemotherapeutic that is widely used in oncology, although its cardiotoxicity. Hypothesis: Doxorubicin-induced left ventricular dysfunction in rats fulfills echocardiography and hemodynamic characteristics of chemotherapy-induced heart failure. Methods: We randomly assigned Ren-2 transgenic hypertensive (TGR, n = 17) and normotensive rats (HanSD, n = 22), at the age of 8 weeks to doxorubicin (2.5 mg/kg in 0.5 ml of normal saline) or placebo in 6 intraperitoneal doses within two weeks (cumulative doxorubicin dose 15 mg/kg). Two weeks later, we performed echocardiography study, pressure-volume analysis (PV), and we weighed the organs. Results: In doxorubicin groups, there was a decrease in the left ventricle weight (1,22 vs. 0,85 g in TGR), while an increase in wall stress (22036 vs. 29754 μL*mmHg/g in TGR). Echocardiography suggested heart remodeling with a decrease in relative wall thickness - RWT (1.02 vs. 0.65 mm in TGR), and together with PV analysis showed a decrease in systolic parameters - left ventricle ejection fraction - LVEF (71.41 vs. 59.96 % in TGR), end-systolic pressure-volume ratio - ESPVR (0.82 vs. 0.45 mmHg/uL in TGR) and preload recruitable stroke work - PRSW (75.71 vs. 60.98 mmHg in TGR). Ventricular-arterial coupling (VAC = Ea/Ees, a measure of cardiac efficiency) was worsened in the doxorubicin groups (1.69 vs. 2.52 in TGR). For all the above p < 0.05, in HanSD, the results were similar (all p < 0.05). Conclusions: Our results suggest that systolic dysfunction and decrease of cardiac efficiency in this model could be caused by heart atrophy, and such an animal model could potentially be an easily reproducible model of chemotherapy-induced heart failure in preclinical cardio-oncology studies.


2020 ◽  
Vol 21 (11) ◽  
pp. 1334-1335
Author(s):  
Steven J. Yakubov ◽  
Anupam Basuray ◽  
Carlos S. Sanchez
Keyword(s):  

2020 ◽  
Vol 21 (11) ◽  
pp. 1327-1333 ◽  
Author(s):  
Pradyumna Agasthi ◽  
Sai Harika Pujari ◽  
Farouk Mookadam ◽  
Nithin R. Venepally ◽  
Hasan Ashraf ◽  
...  

Author(s):  
Kim L Ho ◽  
Qutuba G Karwi ◽  
Cory Wagg ◽  
Liyan Zhang ◽  
Katherina Vo ◽  
...  

Abstract Aims Ketones have been proposed to be a ‘thrifty’ fuel for the heart and increasing cardiac ketone oxidation can be cardioprotective. However, it is unclear how much ketone oxidation can contribute to energy production in the heart, nor whether increasing ketone oxidation increases cardiac efficiency. Therefore, our goal was to determine to what extent high levels of the ketone body, β-hydroxybutyrate (βOHB), contributes to cardiac energy production, and whether this influences cardiac efficiency. Methods and results Isolated working mice hearts were aerobically perfused with palmitate (0.8 mM or 1.2 mM), glucose (5 mM) and increasing concentrations of βOHB (0, 0.6, 2.0 mM). Subsequently, oxidation of these substrates, cardiac function, and cardiac efficiency were assessed. Increasing βOHB concentrations increased myocardial ketone oxidation rates without affecting glucose or fatty acid oxidation rates where normal physiological levels of glucose (5 mM) and fatty acid (0.8 mM) are present. Notably, ketones became the major fuel source for the heart at 2.0 mM βOHB (at both low or high fatty acid concentrations), with the elevated ketone oxidation rates markedly increasing tricarboxylic acid (TCA) cycle activity, producing a large amount of reducing equivalents and finally, increasing myocardial oxygen consumption. However, the marked increase in ketone oxidation at high concentrations of βOHB was not accompanied by an increase in cardiac work, suggesting that a mismatch between excess reduced equivalents production from ketone oxidation and cardiac adenosine triphosphate production. Consequently, cardiac efficiency decreased when the heart was exposed to higher ketone levels. Conclusions We demonstrate that while ketones can become the major fuel source for the heart, they do not increase cardiac efficiency, which also underscores the importance of recognizing ketones as a major fuel source for the heart in times of starvation, consumption of a ketogenic diet or poorly controlled diabetes.


Sign in / Sign up

Export Citation Format

Share Document