ice templating
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 34)

H-INDEX

29
(FIVE YEARS 5)

Author(s):  
Satyanarayana Sabat ◽  
Soumavo Sikder ◽  
Shantanu K. Behera ◽  
Arindam Paul

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Varvara Apostolopoulou-Kalkavoura ◽  
Pierre Munier ◽  
Lukasz Dlugozima ◽  
Veit-Lorenz Heuthe ◽  
Lennart Bergström

AbstractAnisotropic cellulose nanocrystal (CNC) foams with densities between 25 and 130 kg m−3 (CNC25 –CNC130) were prepared by directional ice-templating of aqueous dispersions. Estimates of the solid and gas conduction contributions to the thermal conductivity of the foams using a parallel resistor model showed that the relatively small increase of the radial thermal conductivity with increasing foam density can be attributed to interfacial phonon scattering. The foam wall nanoporosity and, to a lesser extent, the orientation of the CNC particles and alignment of the columnar macropores, also influence the insulation performance of the foams. The insight on the importance of phonon scattering for the thermal insulation properties of nanocellulose foams provides useful guidelines for tailoring nanofibrillar foams for super-insulating applications.


2021 ◽  
pp. 2106269
Author(s):  
Hengfei Qin ◽  
Yifan Zhang ◽  
Jungang Jiang ◽  
Lili Wang ◽  
Mingyao Song ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5004
Author(s):  
Andreas Samourides ◽  
Andreas Anayiotos ◽  
Konstantinos Kapnisis ◽  
Zacharoula Xenou ◽  
Vanessa Hearnden ◽  
...  

In this study, it was demonstrated that ice-templating via freeze drying with custom-made moulds, in combination with air brushing, allows for the fabrication of poly(glycerol sebacate urethane) (PGSU) scaffolds with hierarchical multilayer microstructures to replicate various native soft tissues. The PGSU scaffolds were either monolayered but exhibited an anisotropic microstructure, or bilayered and trilayered, with each layer showing different microstructures. By using freeze drying with custom-made moulds, the ice crystals of the solvent were grown unidirectionally, and after freeze-drying, the scaffolds had an anisotropic microstructure, mimicking tissues such as tendon and skeletal muscle. The anisotropic PGSU scaffolds were also examined for their tensile strength, and a range of mechanical properties were obtained by altering the reactants’ molar ratio and polymer concentration. This is of importance, since soft tissues exhibit different mechanical properties depending on their native location and functionality. By combining freeze drying with airbrushing, scaffolds were fabricated with a thin, non-porous layer on top of the porous layers to allow three-dimensional cell co-culture for tissues such as skin and oral mucosa. These results show that fabrication techniques can be combined to produce PGSU scaffolds with tailored hierarchical microstructures and mechanical properties for multiple tissue engineering applications.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1060
Author(s):  
Kathleen Dammler ◽  
Katja Schelm ◽  
Ulf Betke ◽  
Tobias Fey ◽  
Michael Scheffler

Alumina replica foams were manufactured by the Schwartzwalder sponge replication technique and were provided with an additional strut porosity by a freeze-drying/ice-templating step prior to thermal processing. A variety of thickeners in combination with different alumina solid loads in the dispersion used for polyurethane foam template coating were studied. An additional strut porosity as generated by freeze-drying was found to be in the order of ~20%, and the spacings between the strut pores generated by ice-templating were in the range between 20 µm and 32 µm. In spite of the lamellar strut pore structure and a total porosity exceeding 90%, the compressive strength was found to be up to 1.3 MPa. Combining the replica process with freeze-drying proves to be a suitable method to enhance foams with respect to their surface area accessible for active coatings while preserving the advantageous flow properties of the cellular structure. A two-to-threefold object surface-to-object volume ratio of 55 to 77 mm−1 was achieved for samples with 30 vol% solid load compared to 26 mm−1 for non-freeze-dried samples. The freeze-drying technique allows the control of the proportion and properties of the introduced pores in an uncomplicated and predictable way by adjusting the process parameters. Nevertheless, the present article demonstrates that a suitable thickener in the dispersion used for the Schwartzwalder process is inevitable to obtain ceramic foams with sufficient mechanical strength due to the necessarily increased water content of the ceramic dispersion used for foam manufacturing.


Sign in / Sign up

Export Citation Format

Share Document