static electric field
Recently Published Documents


TOTAL DOCUMENTS

470
(FIVE YEARS 66)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ziad Sabry ◽  
Rui Wang ◽  
Aryo Jahromi ◽  
Christina Rabeler ◽  
William B Kristan ◽  
...  

Sensing electric fields is an ability that certain animal species utilize for communication, hunting, and spatial orientation. Freshwater planarians move toward the cathode in a static electric field (cathodic electrotaxis). First described by Raymond Pearl more than a century ago, planarian electrotaxis has received little attention and the underlying mechanisms and evolutionary significance remain unknown. We developed an apparatus and scoring metrics for automated quantitative and mechanistic studies of planarian behavior upon exposure to a static electric field. Using this automated setup, we characterized electrotaxis in the planarian Dugesia japonica and found that this species responds to voltage instead of to current, in contrast to results from previous studies using other species. Because longer planarians exhibited more robust electrotaxis than shorter planarians, we hypothesized that signals from the head impede cathodic electrotaxis. To test this hypothesis, we took advantage of the regenerative abilities of planarians and compared electrotaxis in head and tail fragments of various lengths. We found that tail and trunk fragments electrotaxed while head fragments did not, regardless of size. However, we could restore cathodic electrotaxis in head fragments via decapitation, demonstrating that the presence of the head impaired cathodic electrotaxis. This result is in stark contrast to other stimulated behaviors such as phototaxis, thermotaxis or chemotaxis, which are weaker or absent in headless fragments. Thus, electrotaxis may be an important ability of headless planarian fragments to support survival prior to head regeneration.


Author(s):  
T.S. Kumykov

The paper considers the degree of fractal structure impact on the electric field intensity inside thunderstorm clouds using the apparatus of fractional integrodifferentiation. We propose a mathematical model of intensity dynamics of a static electric field in the thunderstorm clouds, taking into account media with fractal dimension. The results obtained confirm the close connection of electrophysical processes in thunderclouds with the fractal medium itself. В статье с помощью аппарата дробного интегро-дифференцирования рассматривается степень влияния фрактальной структуры на напряженность электрического поля внутри грозовых облаков. Предлагается математическая модель динамики напряженности статического электрического поля в грозовых облаках с учетом сред с фрактальной размерностью. Полученные результаты подтверждают тесную связь электрофизических процессов в грозовых облаках с самой фрактальной средой В статье с помощью аппарата дробного интегро-дифференцирования рассматривается степень влияния фрактальной структуры на напряженность электрического поля внутри грозовых облаков. Предлагается математическая модель динамики напряженности статического электрического поля в грозовых облаках с учетом сред с фрактальной размерностью. Полученные результаты подтверждают тесную связь электрофизических процессов в грозовых облаках с самой фрактальной средой.


2021 ◽  
Vol 1 ◽  
pp. 129
Author(s):  
Marco Carlotti ◽  
Omar Tricinci ◽  
Frank den Hoed ◽  
Stefano Palagi ◽  
Virgilio Mattoli

Background: The ability to fabricate components capable of performing actuation in a reliable and controlled manner is one of the main research topics in the field of microelectromechanical systems (MEMS). However, the development of these technologies can be limited in many cases by 2D lithographic techniques employed in the fabrication process. Direct Laser Writing (DLW), a 3D microprinting technique based on two-photon polymerization, can offer novel solutions to prepare, both rapidly and reliably, 3D nano- and microstructures of arbitrary complexity. In addition, the use of functional materials in the printing process can result in the fabrication of smart and responsive devices. Methods: In this study, we present a novel methodology for the printing of 3D actuating microelements comprising Liquid Crystal Elastomers (LCEs) obtained by DLW. The alignment of the mesogens was performed using a static electric field (1.7 V/µm) generated by indium-tin oxide (ITO) electrodes patterned directly on the printing substrates. Results: When exposed to a temperature higher than 50°C, the printed microstructures actuated rapidly and reversibly of about 8% in the direction perpendicular to the director. Conclusions: A novel methodology was developed that allows the printing of directional actuators comprising LCEs via DLW. To impart the necessary alignment of the mesogens, a static electric field was applied before the printing process by making use of flat ITO electrodes present on the printing substrates. The resulting microelements showed a reversible change in shape when heated higher than 50 °C.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1116
Author(s):  
Tohru Kimura ◽  
Kengo Inaka ◽  
Noboru Ogiso

The purpose of this study was to elucidate the effects of static electric field (SEF) treatment on vitamin D3 (Vit D3)-induced hypercalcemia and renal calcification in mice. The mice were assigned to three groups: Vit D3-treated mice, mice treated with Vit D3 and SEF (Vit D3 + SEF), and untreated mice. After the administration of Vit D3, the Vit D3 + SEF-treated mice were exposed to SEF treatment by a high-voltage alternating current over five days. Serum biochemical examinations revealed that both the creatinine and blood urea nitrogen concentrations were significantly higher in the Vit D3-treated group. Significantly, decreased Cl concentrations, and increased Ca and inorganic phosphorus concentrations, were found in the Vit D3-treated group. In the Vit D3 + SEF-treated group, these parameters returned to the levels of the untreated group. In the Vit D3-treated group, histopathological examinations showed marked multifocal calcification in the lumens of the renal tubules and the renal parenchyma. The myocardium was replaced by abundant granular mineralization (calcification), with degeneration and necrosis of the calcified fibers. The stomach showed calcification of the cardiac mucosa. SEF treatment remarkably attenuated the Vit D3-induced hypervitaminotic injuries. In conclusion, this study provides important evidence that SEF treatment can reduce hypercalcemia and remove calcium deposits from the renal, cardiac, and gastric tissues. SEF treatment is useful in the regulation of disorders caused by an imbalance of serum electrolytes.


Author(s):  
JINGTONG YU ◽  
CHUNXIA ZHAO ◽  
XIAOYU GU ◽  
GUOQING DI ◽  
YAQIAN XU

Static electric field (SEF) from ultra-high-voltage direct-current (UHVDC) transmission lines has the potential to produce neurobiological effects. To explore these effects and elucidate their potential mechanisms, protein expression levels and morphological structure in the hippocampi of mice were investigated after SEF exposure. Mice from the Institute of Cancer Research were exposed to an environmental SEF induced by UHVDC transmission lines with the strength of 9.20–21.85[Formula: see text]kV/m for 35 days. Mouse body weight was measured weekly during the exposure. After the exposure, hippocampal Ca[Formula: see text]/calmodulin-dependent protein kinase II (CaMKII) and calcineurin (CaN) expression levels were assayed by Western blot. Hippocampal pathologic morphology and ultrastructure were observed using light microscopy and transmission electron microscopy, respectively. No significant differences in body weight, CaMKII and CaN expression levels, and hippocampal pathologic morphology were observed between mice in the exposed and the control groups. However, cytoplasmic vacuolization of the hippocampal neurons was observed in the exposed group. Thus, hippocampal neuron ultrastructure damage may be a mechanism of SEF-exposure-induced memory decline in mice.


2021 ◽  
Vol 125 (33) ◽  
pp. 18483-18493
Author(s):  
Kehan Li ◽  
Bingbing Chen ◽  
Mingjun Yang ◽  
Yongchen Song ◽  
Lanlan Jiang

2021 ◽  
Vol 33 (8) ◽  
pp. 082006
Author(s):  
Michal Rajnak ◽  
Bystrik Dolnik ◽  
Patrik Hodermarsky ◽  
Katarina Paulovicova ◽  
Roman Cimbala ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 168
Author(s):  
Pelin Berik ◽  
Peter L. Bishay

The objective of this work is to characterize the nonlinear dependence of the piezoelectric d15 shear coefficient of a composite actuator on the static electric field and include this effect in finite element (FE) simulations. The Levenberg-Marquardt nonlinear least squares optimization algorithm implemented in MATLAB was applied to acquire the piezoelectric shear coefficient parameters. The nonlinear piezoelectric d15 shear constant of the composite actuator integrated with piezoceramic d15 patches was obtained to be 732 pC/N at 198 V. The experimental benchmark was simulated using a three-dimensional piezoelectric FE model by taking piezoelectric nonlinearity into consideration. The results revealed that the piezoelectric shear d15 coefficient increased nonlinearly under static applied electric fields over 0.5 kV/cm. A comparison between the generated transverse deflections of the linear and nonlinear FE models was also performed.


Sign in / Sign up

Export Citation Format

Share Document