rise velocity
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 27)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 932 ◽  
Author(s):  
Vikash Pandey ◽  
Dhrubaditya Mitra ◽  
Prasad Perlekar

We present a direct numerical simulation (DNS) study of buoyancy-driven bubbly flows in the presence of large-scale driving that generates turbulence. On increasing the turbulence intensity: (a) the bubble trajectories become more curved and (b) the average rise velocity of the bubbles decreases. We find that the energy spectrum of the flow shows a pseudo-turbulence scaling for length scales smaller than the bubble diameter and a Kolmogorov scaling for scales larger than the bubble diameter. We conduct a scale-by-scale energy budget analysis to understand the scaling behaviour observed in the spectrum. Although our bubbles are weakly buoyant, the statistical properties of our DNS are consistent with the experiments that investigate turbulence modulation by air bubbles in water.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 437
Author(s):  
Andrea Cioncolini ◽  
Mirco Magnini

Shapes and rise velocities of single air bubbles rising through stagnant water confined inside an annular channel were investigated by means of experiments and numerical simulations. Fast video imaging and image processing were used for the experiments, whilst the numerical simulations were carried out using the volume of fluid method and the open-source package OpenFOAM. The confinement of the annular channel did not affect the qualitative behavior of the bubbles, which exhibited a wobbling rise dynamic similar to that observed in bubbles rising through unconfined liquids. The effect of the confinement on the shape and rise velocity was evident; the bubbles were less deformed and rose slower in comparison with bubbles rising through unconfined liquids. The present data and numerical simulations, as well as the data collected from the literature for use here, indicate that the size, shape, and rise velocity of single bubbles are closely linked together, and prediction methods that fail to recognize this perform poorly. This study and the limited evidence documented in the literature indicate that the confinement effects observed in non-circular channels of complex shape are more complicated than those observed with circular tubes, and much less well understood.


2021 ◽  
Vol 932 ◽  
Author(s):  
Cosan Daskiran ◽  
Fangda Cui ◽  
Michel C. Boufadel ◽  
Ruixue Liu ◽  
Lin Zhao ◽  
...  

Understanding the size of oil droplets released from a jet in crossflow is crucial for estimating the trajectory of hydrocarbons and the rates of oil biodegradation/dissolution in the water column. We present experimental results of an oil jet with a jet-to-crossflow velocity ratio of 9.3. The oil was released from a vertical pipe 25 mm in diameter with a Reynolds number of 25 000. We measured the size of oil droplets near the top and bottom boundaries of the plume using shadowgraph cameras and we also filmed the whole plume. In parallel, we developed a multifluid large eddy simulation model to simulate the plume and coupled it with our VDROP population balance model to compute the local droplet size. We accounted for the slip velocity of oil droplets in the momentum equation and in the volume fraction equation of oil through the local, mass-weighted average droplet rise velocity. The top and bottom boundaries of the plume were captured well in the simulation. Larger droplets shaped the upper boundary of the plume, and the mean droplet size increased with elevation across the plume, most likely due to the individual rise velocity of droplets. At the same elevation across the plume, the droplet size was smaller at the centre axis as compared with the side boundaries of the plume due to the formation of the counter-rotating vortex pair, which induced upward velocity at the centre axis and downward velocity near the sides of the plume.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012060
Author(s):  
O.N. Kashinsky ◽  
A.S. Kurdumov

Abstract The motion of gas slugs in annular channels was studied experimentally. The outer tube diameter was 32 mm. The inner tube diameter varied from 4 to 25 mm. The gas slugs were produced by injecting air through a capillary tube. The shapes of gas slugs were studied by high-speed videos. The paper presents data on the rise velocity of gas slugs in the channels, and wall shear stress measurements, performed by electrodiffusional technique. The probes were mounted on both walls of the channel. The evolution of wall shear stress during slug passage was recorded.


2021 ◽  
Vol 36 (2) ◽  
pp. 35-42
Author(s):  
H.A Abubakar

Systematic analysis of the effect of gravitational, interfacial, viscous and inertia forces acting on a Taylor bubble rising in flowing liquids characterised by the dimensionless Froude (Uc), inverse viscosity (Nf ) and Eötvös numbers (Eo) is carried out using computational fluid dynamic finite element method. Particular attention is paid to cocurrent (i.e upward) liquid flow and the influence of the characterising dimensionless parameters on the bubble rise velocity and morphology analysed for Nf, Eo and Uc ranging between [40, 100], [20, 300] and [−0.20, 0.20], respectively. Analysis of the results of the numerical simulations showed that the existing theoretical model for the prediction of Taylor bubble rise velocity in upward flowing liquids could be modified to accurately predict the rise velocity in liquids with high viscous and surface tension effects. Furthermore, the mechanism governing the change in morphology of the bubble in flowing liquids was shown to be the interplay between the viscous stress and total curvature stress at the interface. Keywords: Taylor bubble, finite element, slug flow, CFD, rise velocity


2021 ◽  
Author(s):  
Rashi Gupta ◽  
Roshan Saini ◽  
Rajeev Parmar

Abstract Microbubbles are small gas filled bubbles which has wide application in various industries. Stability of microbubble dispersion is of primary concern for the application of microbubbles in these fields. In this research, the stability of microbubble dispersion generated using CTAB surfactant is analysed by drainage mechanism. The stability is studied on the basis of half-life of microbubble dispersion. Microbubble dispersion gas fraction and rise velocity of microbubble is also calculated and the size of microbubble is estimated from the rise velocity of microbubble. Further, Silica nanoparticles are added in the surfactants to study their effect on the stability of microbubble dispersion. The observed results clearly indicates that the stability of microbubble dispersion is significantly affected by the surfactant concentration and the weight of silica nanoparticle in the liquid. Similar results were observed for rise velocity and bubble size. The present work may be beneficial for the application of microbubble in various chemical and biochemical industries and scientific community.


2021 ◽  
Vol 924 ◽  
Author(s):  
Daniel J. Ruth ◽  
Marlone Vernet ◽  
Stéphane Perrard ◽  
Luc Deike
Keyword(s):  

Abstract


2021 ◽  
Vol 9 (2B) ◽  
Author(s):  
Marcos Bertrand De Azevedo

The present work reports an experimental study of developed liquid films falling around single Taylor bubbles inside vertical tubes containing stagnant liquids. Experiments were carried out in acrylic tubes with 2.0 m length and inner diameters of 0.019, 0.024 and 0.034 m. Five water-glycerin mixtures were used, corresponding to film Reynolds number(Ref)ranging from 2 to 7650. A pulse-echo ultrasonic technique was applied to measure the rise velocity of the bubble and the equilibrium thickness of the liquid film. These parameters together with the calculated standard deviation of the equilibrium film thickness provided information about the development of waves on the gas-liquid interfaces, which could be related with the laminar-turbulent transition of liquid films falling around Taylor bubbles. The results indicated that the wave amplitudes increased sharply for Ref> 1000. This value of Ref is in agreement with literature concerning the laminar-turbulent transition for free falling films on vertical surfaces.


2021 ◽  
Author(s):  
Jair Arrieta Baldovino ◽  
Ronaldo Izzo ◽  
Carlos Millan-Paramo

Abstract Few pieces of research have been conducted on the phenomenon of capillary rise in the field of soil for agriculture and geotechnical engineering. The rate of capillary rise of water in fine and granular soil is one of the major challenges for rising experiments in vertical open-tubes, as the time required for the water to reach the maximum height of capillary rise (hc) can vary from 50 to 400 days. The control variables during the capillary experiment are mainly: saturated and unsaturated hydraulic conductivity, soil density, water content, soil column height, and velocity of capillary rise. Thus, this paper presents theoretical and experimental studies of capillary rise in several soils based on matric suction models. Results were gathered by comparing the behavior of capillary rise using the analytical solutions developed by Lu (2016), Lu and Likos (2004), and by Terzaghi (1943). On analysis of the results, it was concluded that the equation proposed by Lu and Likos (2004) is the most suitable to predict the capillary rise velocity for the fine-coarse soils and the equation proposed by Lu (2016) is more suitable to predict the matric suction. Other mathematical model developed by Liu et al. (2014) is also suitable to estimate the hc but don’t consider the velocity of the water. The capillary rise method to measure the matric suction must be more applicable in sandy soil than clayey soils.


Sign in / Sign up

Export Citation Format

Share Document