late miocene
Recently Published Documents


TOTAL DOCUMENTS

2976
(FIVE YEARS 696)

H-INDEX

87
(FIVE YEARS 8)

2022 ◽  
Vol 92 (1) ◽  
pp. 32-49
Author(s):  
Jonathan Ledesma ◽  
Cecilia E. Del Papa ◽  
Patricio Payrola

Abstract The Puna–Altiplano Plateau of the Central Andes is the second-highest plateau in the world (after Tibet), with a mean elevation of 4000 m.a.s.l. and an arid to hyperarid climate. Uplift of the Puna–Altiplano Plateau has affected lower-level atmospheric circulation, acting as a barrier to humid easterly winds from the Amazon basin and favoring an across-strike precipitation gradient resulting in a humid climate towards the east of the plateau and an arid to hyperarid climate in the orogen's interior. In the modern climate, the Bolivian High anticyclone regulates upper troposphere circulation, but little is known about the high-altitude tropospheric circulation of the past. This work focuses on the eolian record of the San Antonio de los Cobres basin along the eastern border of the Puna Plateau, NW Argentina, with the aim of analyzing its origin and thus elucidating the late Miocene winds. The eolian deposits are constrained by 7.8 Ma (K/Ar and U/Pb) and 6.4 Ma (U/Pb) ignimbrites at the nearly basal and upper contacts, respectively. Based on stratigraphic, sedimentological, and provenance analysis of the eolian units, we have identified three main facies associations (FAs): FA1) cross-stratified sandstones with large- to small-scale tabular, planar cross-bedding and with trough cross-stratification; FA2) sandstones with planar to low-angle stratification associated with thinly laminated ripple sandstone strata; FA3) medium- to coarse-grained massive sandstones associated with pebbly to bouldery, matrix-supported conglomerates and clast-supported conglomerates. The lateral and vertical facies assemblages indicate a dune field confined to topographic depressions dominated by transverse dunes with straight and sinuous crestlines that laterally grade into sandsheets associated with ephemeral streams. Paleoflows, lithotypes, and grain-size determinations indicate a persistent north-northwest provenance and wind velocities of 24–38 km/h (with maximum velocities of 55–75 km/h). The results of our analysis coupled with data from previous studies indicates that, for at least the last ca. 8 Myr, the winds have been blowing constantly from the north-northwest with an intensity similar to the present. This implies that the paleo-atmospheric circulation had a similar pattern to the present-day one. Therefore, we conclude that the upper-troposphere circulation in the Puna Plateau of NW Argentina was already regulated by the Bolivian High anticyclone during the Miocene, generating constant north-northwesterly winds.


Author(s):  
Daniel Barasoain ◽  
Alfredo E. Zurita ◽  
Darin A. Croft ◽  
Claudia I. Montalvo ◽  
Víctor H. Contreras ◽  
...  

Geology ◽  
2022 ◽  
Author(s):  
Lilian M. Leandro ◽  
Ana P. Linhares ◽  
Marcelo A. De Lira Mota ◽  
Gerson Fauth ◽  
Alessandra Santos ◽  
...  

The timing of continental-scale marine flooding events in Western Amazonia during the Neogene is still an unsolved question. Despite broad proxy-based evidence of such events, the pathways and duration of late Miocene marine incursions remain controversial. We provide coupled calcareous and organic microfossil and geochemical data from six onshore cores from Neogene sequences of the Solimões Basin, Brazil. Our records support minor marine influence in the early Miocene (23.0, 21.1, 18.6, and 16.3 Ma), middle Miocene (14.9, 13.7, and 12.9 Ma) and early Pliocene (4.7, 4.2–4.1, and 3.8 Ma), and conspicuous marine incursions in the late Miocene (11.1–8.8 Ma) suggested by the consistent presence of salinity-indicative microfossils and geochemical data. Our findings challenge the view of major marine incursions in the early and middle Miocene in the studied area. We propose for the first time a new late Miocene incursion (LMI) event as the main marine flooding event in Western Amazonia during the Neogene. These onshore records are compared with three offshore cores from the Atlantic and Pacific Oceans. The similarity between microfossil assemblages of the Solimões Basin and the Caribbean Sea, and evidence of increased runoff from the Orinoco river drainage system, strongly suggest the Caribbean Sea as the primary source area of the marine incursions, supporting a Venezuelan seaway. We further show for the first time the potential linkage between Neogene marine incursions (mainly the LMI) into the Solimões Basin and major disturbances in the global carbon cycle.


2021 ◽  
Vol 47 (3) ◽  
pp. 43-49
Author(s):  
Rubiyanto Kapid ◽  
Wahyu Dwijo Santoso ◽  
Halmi Insani

In Indonesia, nannofosils are commonly used for age estimation on Miocene marine sediment, but they are rarely performed on Quaternary sediment. This paper introduces two nannofossil biozones, Martini (1971) and Backman et al. (2012) and the comparison between the two biozones. An uninterrupted interval of marine sediments was described and picked for quantitative nannoplankton analysis. The samples were taken from Ledok Formation to Lidah Formation in Pati Region, Northeast Java Basin. The samples were prepared by quick smear slides method and and analyzed by quantitative field of view method. Martini (1971) biozone can be used to subdivide the Late Miocene–Pleistocene sediments into 5 biozones, but Backman et al. (2012) can be used to classify the same sediments into 8 biozones. The biozone subdivision from Backman et al. (2012) is more detailed than that of Martini (1971) because an updated dating and biozone in the three new dating zone data.


Author(s):  
Kata Molnár ◽  
Pierre Lahitte ◽  
Stéphane Dibacto ◽  
Zsolt Benkó ◽  
Samuele Agostini ◽  
...  

AbstractLate Miocene to Pleistocene volcanism within the Vardar zone (North Macedonia) covers a large area, has a wide range in composition, and is largely connected to the tectonic evolution of the South Balkan extensional system, the northern part of the Aegean extensional regime. The onset of the scattered potassic to ultrapotassic volcanism south from the Scutari-Peć transverse zone occurred at ca. 8.0 Ma based on this study. Here, we focused on three volcanic centers located on deep structures or thrust faults along the western part of the Vardar zone, for which there is none to very little geochronological and geochemical data available. Pakoševo and Debrište localities are represented as small remnants of lava flows cropping out at the southern edge of Skopje basin and at the western edge of Tikveš basin, respectively. Šumovit Greben center is considered as part of the Kožuf-Voras volcanic system, and it is located on its westernmost side, at the southern edge of Mariovo basin, which is largely composed of volcaniclastic sediments. We present new eruption ages applying the unspiked Cassignol-Gillot K–Ar technique on groundmass, as well as petrological and geochemical data, supplemented with Sr and Nd isotopes to complement and better understand the Neogene-Pleistocene volcanism in the region. Eruption ages on these rocks interlayered between sedimentary formations allow to better constrain the evolution of those sedimentary basins. Rocks from the three volcanic centers belong to the high-K calc-alkaline–shoshonitic series based on their elevated K content. The oldest center amongst these three localities, as well as other Late Miocene centers within the region, is the trachyandesitic Debrište, which formed at ca. 8.0 Ma, and exhibits the highest Nd and lowest Sr isotopic ratios (0.512441–0.512535 and 0.706759–0.706753, respectively). The basaltic trachyandesite Pakoševo center formed at ca. 3.8 Ma and its Nd and Sr isotopic ratios (0.512260 and 0.709593, respectively) bear the strongest signature of crustal contamination. The rhyolitic Šumovit Greben center is a composite volcanic structure formed at ca. 3.0–2.7 Ma. Its youngest eruption unit has a slightly higher Nd and lower Sr isotopic ratios (0.512382 and 0.709208, respectively) representing a magma with a lesser extent of crustal assimilation than the other samples from this center. The overall trend through time in the Sr and Nd isotopic ratios of the Late Miocene to Pleistocene mafic volcanic centers in the region implies an increasing rate of metasomatism of the lithospheric mantle.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qian Tian ◽  
Xiaomin Fang ◽  
Yan Bai ◽  
Chihao Chen ◽  
Juzhi Hou ◽  
...  

The northeastern Tibetan Plateau (NE TP) has long been thought to be the last part of the Plateau to be raised, but this assumption has been challenged by recent analyses of fossil leaf energy, which have pointed to the possibility that the present surface altitude of ∼3,000 m above sea level (asl) in the Qaidam Basin (QB) was attained during the Oligocene. Here, for the first time, we present a record of glycerol dialkyl glycerol tetraethers (GDGTs) from a well-dated Cenozoic section in the QB. This record appears to demonstrate that the mean annual average paleotemperature of the QB was 28.4 ± 2.9°C at ∼18.0 Ma. This would suggest that the paleoelevation of the QB was only ∼1,488 m asl at that time and that a ∼1,500 m uplift was attained afterwards, in agreement with the massive shortening of the QB and the rapid drying of inland Asia since the late Miocene.


Author(s):  
Gabriel Tagliaro ◽  
Craig S. Fulthorpe ◽  
David K. Watkins ◽  
David De Vleeschouwer ◽  
Hans Brumsack ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document