multiply connected domains
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 124 ◽  
pp. 107654
Author(s):  
Daniel Faraco ◽  
Sauli Lindberg ◽  
David MacTaggart ◽  
Alberto Valli

2021 ◽  
pp. 1-32
Author(s):  
Rémy Rodiac ◽  
Paúl Ubillús

In this article we derive the expression of renormalized energies for unit-valued harmonic maps defined on a smooth bounded domain in R 2 whose boundary has several connected components. The notion of renormalized energies was introduced by Bethuel–Brezis–Hélein in order to describe the position of limiting Ginzburg–Landau vortices in simply connected domains. We show here, how a non-trivial topology of the domain modifies the expression of the renormalized energies. We treat the case of Dirichlet boundary conditions and Neumann boundary conditions as well.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Quansheng Zang ◽  
Jun Liu ◽  
Yang Zhou ◽  
Gao Lin

Abstract This paper explores an isogeometric boundary element method (IGA-BEM) for sloshing problems in cylindrical tanks with single and multiply connected domains. Instead of the Lagrange basis functions used in the standard BEM, the nonuniform rational B-splines (NURBS) basis functions are introduced to approximate the geometries of the problem boundaries and the unknown variables. Compared with the Lagrange basis functions, NURBS basis functions can accurately reconstruct the geometric boundary of analysis domain with almost no error, and all the data information for NURBS basis functions can be directly obtained from the computer-aided design (cad) or computer-aided engineering (cae) commercial software, which implies the modeling process of IGA-BEM is more simple than that of the standard BEM. NURBS makes it possible for the IGA-BEM to realize the seamless connection between cad and cae software with relative higher calculation accuracy than the standard BEM. Based on the weighted residual method as well as the divergence theorem, the IGA-BEM is developed for the single and multiply connected domains, whose boundaries are separately defined in the parameter space by different knot vectors. The natural sloshing frequencies of the liquid sloshing in a circular cylindrical tank with a coaxial or an off-center circular pipe, an elliptical cylindrical tank with an elliptical pipe, a circular cylindrical tank with multiple pipes are estimated with the introduced method by assuming an ideal (inviscid and incompressible) liquid, irrotational small-amplitude sloshing, and the linear free-surface condition. The comparison between the results obtained by the proposed method and those in the existing literatures shows very good agreements, which verifies the proposed model well. Meanwhile, the effects of radius ratio, liquid depth, number, and location of internal pipe (pipes) on the natural sloshing frequency and sloshing mode are analyzed carefully, and some conclusions are outlined finally.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1175
Author(s):  
El Mostafa Kalmoun ◽  
Mohamed M. S. Nasser ◽  
Khalifa A. Hazaa

We study the motion of a single point vortex in simply- and multiply-connected polygonal domains. In the case of multiply-connected domains, the polygonal obstacles can be viewed as the cross-sections of 3D polygonal cylinders. First, we utilize conformal mappings to transfer the polygonal domains onto circular domains. Then, we employ the Schottky-Klein prime function to compute the Hamiltonian governing the point vortex motion in circular domains. We compare between the topological structures of the contour lines of the Hamiltonian in symmetric and asymmetric domains. Special attention is paid to the interaction of point vortex trajectories with the polygonal obstacles. In this context, we discuss the effect of symmetry breaking, and obstacle location and shape on the behavior of vortex motion.


Sign in / Sign up

Export Citation Format

Share Document