tide gauges
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 117)

H-INDEX

30
(FIVE YEARS 3)

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 10
Author(s):  
Valerio Baiocchi ◽  
Alessandro Bosman ◽  
Gino Dardanelli ◽  
Francesca Giannone

<p class="Abstract">Differential GNSS positioning on vessels is of considerable interest in various fields of application as navigation aids, precision positioning for geophysical surveys or sampling purposes especially when high resolution bathymetric surveys are conducted. However ship positioning must be considered a kinematic survey with all the associated problems. The possibility of using high-precision differential GNSS receivers in navigation is of increasing interest, also due to the very recent availability of low-cost differential receivers that may soon replace classic navigation ones based on the less accurate point positioning technique. The availability of greater plano-altimetric accuracy, however, requires an increasingly better understanding of planimetric and altimetric reference systems. In particular, the results allow preliminary considerations on the congruence between terrestrial reference systems (which the GNSS survey can easily refer to) and marine reference systems (connected to National Tidegauge Network). In spite of the fluctuations due to the physiological continuous variation of the ship's attitude, GNSS plot faithfully followed the trend of the tidal variations and highlighted the shifts between GNSS plot and the tide gauges due to the different materialization of the relative reference systems.</p><p class="Abstract"><span lang="EN-US"><br /></span></p>


Author(s):  
Saskia Esselborn ◽  
Tilo Schöne ◽  
Julia Illigner ◽  
Robert Weiß ◽  
Thomas Artz ◽  
...  

Consistent calibration and monitoring is a basic prerequisite for providing reliable time series of global and regional sea level variations from altimetry. The precision of sea level measurements and regional biases for six altimeter missions (Jason-1/2/3, Envisat, Saral, Sentinel-3A) is assessed at eleven GNSS-controlled tide gauge stations in the German Bight (SE North Sea) for the period 2002 to 2019. The gauges are partly located at the open water, partly at the coast close to mudflats. The altimetry is extracted at virtual stations with distances from 2 to 24 km from the gauges. The processing is optimized for the region and adjusted for the comparison with instantaneous tide gauges readings. An empirical correction is developed to account for mean height gradients and slight differences of the tidal dynamics between gauge and altimetry which improves the agreement between the two data sets by 15-75%. The precision of the altimeters is depending on location and mission and is shown to be at least 1.8 to 3.7 cm based on an assumed precision of 2 cm for the gauges. The accuracy of the regional mission biases is strongly dependent on the mean sea surface heights near the stations. The most consistent biases are obtained based on the CLS2011 model with mission dependent accuracies from 1.3 to 3.4 cm. Hence, the GNSS-controlled tide gauges operated operationally by WSV might complement the calibration and monitoring activities at dedicated CalVal stations.


2021 ◽  
Vol 13 (24) ◽  
pp. 5077
Author(s):  
Trine S. Dahl-Jensen ◽  
Ole B. Andersen ◽  
Simon D. P. Williams ◽  
Veit Helm ◽  
Shfaqat A. Khan

Studies of global sea level often exclude Tide Gauges (TGs) in glaciated regions due to vertical land movement. Recent studies show that geodetic GNSS stations can be used to estimate sea level by taking advantage of the reflections from the ocean surface using GNSS Interferometric Reflectometry (GNSS-IR). This method has the immediate benefit that one can directly correct for bedrock movements as measured by the GNSS station. Here we test whether GNSS-IR can be used for measurements of inter annual sea level variations in Thule, Greenland, which is affected by sea ice and icebergs during much of the year. We do this by comparing annual average sea level variations using the two methods from 2008–2019. Comparing the individual sea level measurements over short timescales we find a root mean square deviation (RMSD) of 13 cm, which is similar to other studies using spectral methods. The RMSD for the annual average sea level variations between TG and GNSS-IR is large (18 mm) compared to the estimated uncertainties concerning the measurements. We expect that this is in part due to the TG not being datum controlled. We find sea level trends from GNSS-IR and TG of −4 and −7 mm/year, respectively. The negative trend can be partly explained by a gravimetric decrease in sea level as a result of ice mass changes. We model the gravimetric sea level from 2008–2017 and find a trend of −3 mm/year.


2021 ◽  
pp. 102-112
Author(s):  
Blair S. Holloway

Coastal flooding occurs when saltwater inundates normally dry land and the resulting impacts can range from minor flooding of low-lying areas along the coast, to significant damage to property and structures. Previous research consistently suggests that if sea-level rise continues to increase along the East Coast of the United States, coastal flooding will occur more frequently. In order to document the history of coastal flooding along the southeastern Georgia and southeastern South Carolina coast, a coastal flood event database was created for National Ocean Service tide gauges located in Charleston Harbor, South Carolina and Fort Pulaski, Georgia. Trends from the data show that coastal flooding is occurring more frequently with time at both tide gauges, particularly over the last five to ten years. Because of the increased frequency and worsening impacts of tidal flooding, a tide forecast tool is implemented operationally in an effort to improve deterministic tide forecasts. This study extends the dataset used in the Charleston Harbor forecast tool, expands the tool to Fort Pulaski, and compares the synoptic category forecast equations to an all-inclusive equation that does not differentiate by synoptic category. Results show that there is virtually no difference in the forecast accuracy between the all-inclusive forecast equation and the specific forecast equations based on synoptic category. Furthermore, the all-inclusive forecast equation can be implemented operationally, will help improve deterministic tide forecasts, and will likely aid in the decision-making process for Coastal Flood Watches, Warnings, and Advisories issued by the National Weather Service office in Charleston, South Carolina.


2021 ◽  
Author(s):  
Hiroyuki K. M. Tanaka ◽  
Masaatsu Aichi ◽  
Szabolcs József Balogh ◽  
Cristiano Bozza ◽  
Rosa Coniglione ◽  
...  

Abstract Meteorological-tsunami-like (or meteotsunami-like) periodic oscillation was muographically detected with the Tokyo-Bay Seafloor Hyper-Kilometric Submarine Deep Detector (TS-HKMSDD) deployed in the underwater highway called the Trans-Tokyo Bay Expressway or Tokyo Bay Aqua-Line (TBAL). It was detected right after the arrival of the 2021 Typhoon-16 that passed through the region 400 km south of the bay. The measured oscillation period and decay time were respectively 3 hours and 10 hours. These measurements were found to be consistent with previous tide gauge measurements. Meteotsunamis are known to take place in bays and lakes, and the temporal and spatial characteristics of meteotsunamis are similar to seismic tsunamis. However, their generation and propagation mechanisms are not well understood. The current result indicates that a combination of muography and trans-bay or trans-lake underwater tunnels will offer an additional tool to measure meteotsunamis at locations where tide gauges are unavailable.


2021 ◽  
Author(s):  
Xiaohui Wang ◽  
Martin Verlaan ◽  
Jelmer Veenstra ◽  
Hai Xiang Lin

Abstract. Global tide and surge models play a major role in forecasting coastal flooding due to extreme events or climate change. The model performance is strongly affected by parameters such as bathymetry and bottom friction. In this study, we propose a method that estimates bathymetry globally and the bottom friction coefficient in the shallow waters for a Global Tide and Surge Model (GTSMv4.1). However, the estimation effect is limited by the scarcity of available tide gauges. We propose to complement sparse tide gauges with tide time-series generated using FES2014. The FES2014 dataset outperforms GTSM in most areas and is used as observations for the deep ocean and some coastal areas, such as Hudson Bay/Labrador, where tide gauges are scarce but energy dissipation is large. The experiment is performed with a computation and memory efficient iterative parameter estimation scheme applied to Global Tide and Surge Model (GTSMv4.1). Estimation results show that model performance is significantly improved for deep ocean and shallow waters, especially in the European Shelf directly using the CMEMS tide gauge data in the estimation. GTSM is also validated by comparing to tide gauges from UHSLC, CMEMS, and some Arctic stations in the year 2014.


2021 ◽  
Vol 9 (12) ◽  
pp. 1362
Author(s):  
Xiaolong Zong ◽  
Ruzhen Zhang ◽  
Shuwen Zhang ◽  
Fangjing Deng ◽  
Wei Zhou ◽  
...  

In the background of global warming and climate change, nuisance flooding is only caused by astronomical tides, which could be modulated by the nodal cycle. Therefore, much attention should be paid to the variation in the amplitude of the nodal cycle. In this paper, we utilize the enhanced harmonic analysis method and the independent point scheme to obtain the time-dependent amplitudes of the 8.85-year cycle of N2 tide and the 4.42-year cycle of 2N2 tide based on water level records of four tide gauges in the Gulf of Maine. Results indicate that the long-term trends of N2 and 2N2 tides vary spatially, which may be affected by the sea-level rise, coastal defenses, and other possible climate-related mechanisms. The comparison between Halifax and Eastport reveals that the topography greatly influences the amplitudes of those cycles. Moreover, a quasi 20-year oscillation is obvious in the 8.85-year cycle of N2 tide. This oscillation probably relates to a 20-year mode in the North Atlantic Ocean.


2021 ◽  
Author(s):  
Yuchen Wang ◽  
Mohammad Heidarzadeh ◽  
Kenji Satake ◽  
Gui Hu

Abstract. On March 4, 2021, two tsunamigenic earthquakes (Mw 7.4 and Mw 8.1) occurred successively within 2 h in Kermadec Islands. We examined sea level records at tide gauges located at ~100 km to ~2,000 km from the epicenters, conducted Fourier and Wavelet analyses as well as numerical modelling of both tsunamis. Fourier analyses indicated that the energy of the first tsunami is mainly distributed in the period range of 5–17 min, whereas it is 8–28 min for the second tsunami. Wavelet plots showed that the oscillation of the first tsunami continued even after the arrival of the second tsunami. As the epicenters of two earthquakes are close (~ 55 km), we reconstructed the source spectrum of the second tsunami by using the first tsunami as the empirical Green’s function. The main spectral peaks are 25.6 min, 16.0 min, and 9.8 min. The results are similar to those calculated using tsunami/background ratio method and also consistent with source models.


2021 ◽  
Vol 6 (24) ◽  
pp. 139-151
Author(s):  
Mohammad Hanif Hamden ◽  
Ami Hassan Md Din ◽  
Dudy Darmawan Wijaya

Satellite altimetry technology has been widely used in exploring Earth’s Ocean activities. Achieving a remarkable accuracy in measuring sea level for ocean tide analysis has led the local researchers to investigate more details on tidal behaviour in the regional area. This study is an attempt to assess the reliability of derived tidal constituents between satellite radar altimetry and in-situ data which is referred to as coastal tide gauges. Three satellite missions denoted as TOPEX class missions namely TOPEX, Jason-1, and Jason-2 were used to derive along-track sea surface height (SSH) time series over 23 years. Besides, four selected coastal tide gauges were used for tidal analysis and validation where the tidal data have at least 19 years of hourly observation. Derivation of tidal constituents from both satellite altimetry and tide gauges were executed by adopting the harmonic analysis method. The comparisons were made by calculating the Root Mean Square Misfit (RMSmisfit) of each tidal constituent between the nearest altimetry point to the tide gauges. After RMSmisfit, Root Sum Square (RSS) values of tidal constituents at each tide gauge were also calculated. The results displayed the RMSmisfit of tidal constituents agreed well with the selected tide gauges which are within 10 cm except for M2 constituents which recorded 10.2 cm. Pelabuhan Kelang tide gauge station showed the highest RSS value followed by Pulau Langkawi which recorded 21.2 cm and 9.8 cm, respectively. In conclusion, overall results can be inferred that the satellite-derived tidal constituents are likely to have good agreement with the selected tide gauge stations. Nevertheless, further analysis should be executed in determining high precision satellite-derived tidal constituents, especially in the complex regional area.


Oceanography ◽  
2021 ◽  
pp. 82-83
Author(s):  
Angela Hibbert ◽  
◽  
Liz Bradshaw ◽  
Jeff Pugh ◽  
Simon Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document