fiber architecture
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 52)

H-INDEX

37
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 451
Author(s):  
Muhammed H. Arikan ◽  
Fatih Eroglu ◽  
Volkan Eskizeybek ◽  
Emine Feyza Sukur ◽  
Mehmet Yildiz ◽  
...  

Aerospace-grade composite parts can be manufactured using Vacuum Bag Only prepregs through an accurate process design. Quality in the desired part can be realized by following process modeling, process optimization, and validation, which strongly depend on a primary and systematic material characterization methodology of the prepreg system and material constitutive behavior. The present study introduces a systematic characterization approach of a Vacuum Bag Only prepreg by covering the relevant material properties in an integrated manner with the process mechanisms of fluid flow, consolidation, and heat transfer. The characterization recipe is practiced under the categories of (i) resin system, (ii) fiber architecture, and (iii) thermal behavior. First, empirical models are successively developed for the cure-kinetics, glass transition temperature, and viscosity for the resin system. Then, the fiber architecture of the uncured prepreg system is identified with X-ray tomography to obtain the air permeability. Finally, the thermal characteristics of the prepreg and its constituents are experimentally characterized by adopting a novel specimen preparation technique for the specific heat capacity and thermal conductivity. Thus, this systematic approach is designed to provide the material data to process modeling with the motivation of a robust and integrated Vacuum Bag Only process design.


2021 ◽  
Vol 15 ◽  
Author(s):  
Miriam Menzel ◽  
Marouan Ritzkowski ◽  
Jan A. Reuter ◽  
David Gräßel ◽  
Katrin Amunts ◽  
...  

The correct reconstruction of individual (crossing) nerve fibers is a prerequisite when constructing a detailed network model of the brain. The recently developed technique Scattered Light Imaging (SLI) allows the reconstruction of crossing nerve fiber pathways in whole brain tissue samples with micrometer resolution: the individual fiber orientations are determined by illuminating unstained histological brain sections from different directions, measuring the transmitted scattered light under normal incidence, and studying the light intensity profiles of each pixel in the resulting image series. So far, SLI measurements were performed with a fixed polar angle of illumination and a small number of illumination directions, providing only an estimate of the nerve fiber directions and limited information about the underlying tissue structure. Here, we use a display with individually controllable light-emitting diodes to measure the full distribution of scattered light behind the sample (scattering pattern) for each image pixel at once, enabling scatterometry measurements of whole brain tissue samples. We compare our results to coherent Fourier scatterometry (raster-scanning the sample with a non-focused laser beam) and previous SLI measurements with fixed polar angle of illumination, using sections from a vervet monkey brain and human optic tracts. Finally, we present SLI scatterometry measurements of a human brain section with 3 μm in-plane resolution, demonstrating that the technique is a powerful approach to gain new insights into the nerve fiber architecture of the human brain.


2021 ◽  
pp. 507-511
Author(s):  
Christopher P. Cop ◽  
Alfred C. Schouten ◽  
Bart F. J. M. Koopman ◽  
M. Sartori

Author(s):  
Luke T. Hudson ◽  
Devin W. Laurence ◽  
Hunter M. Lau ◽  
Brennan T. Mullins ◽  
Deenna D. Doan ◽  
...  

2021 ◽  
Vol 36 (3) ◽  
pp. 255-263
Author(s):  
N. Meyer ◽  
A. N. Hrymak ◽  
L. Kärger

Abstract Sheet Molding Compounds (SMC) offer a cost efficient way to enhance mechanical properties of a polymer with long discontinuous fibers, while maintaining formability to integrate functions, such as ribs, beads or other structural reinforcements. During SMC manufacturing, fibers remain often in a bundled configuration and the resulting fiber architecture determines part properties. Accurate prediction of this architecture by simulation of flow under consideration of the transient rheology and transient fiber orientations can speed up the development process. In particular, the interaction of bundles is of significance to predict molding pressures correctly in a direct simulation approach, which resolves individual fiber bundles. Thus, this work investigates the tangential short-range lubrication forces between fiber bundles with analytical and numerical techniques. A relation between the effective sheared gap between bundles and the bundle separation distance at the contact point is found and compared to experimental results from literature. The result is implemented in an ABAQUS contact subroutine to incorporate short-range interactions in a direct bundle simulation framework.


2021 ◽  
Vol 2 (2) ◽  
pp. 35-46
Author(s):  
Mikhail E. Belkin ◽  
Vladislav Golovin ◽  
Yuriy Tyschuk ◽  
Alexander S. Sigov

Specialties of an analog fronthaul based on Radio-over-Fiber architecture and key principles of exploiting microwave photonics technology when designing a millimeter-wave Radio Unit (RU) are reviewed and discussed. To clarify, in this paper we perform a comparative simulation for a specific example of developing an obligatory RU's node as a reference oscillator with an output radio frequency (RF) of more than 100 GHz, which is typically implemented by means of a circuit that includes a relatively low-frequency RF oscillator followed by a high-order frequency multiplier. Following the principles and approaches outlined, we propose and describe two alternative schemes for implementing a frequency multiplier from 4.25 to 102 GHz using microwave-electronics or microwave-photonics approach. Further, using Cadence AWRDE software with an additional introduction of the previously proposed models of optoelectronic devices, their main characteristics are considered. To ensure the practical orientation of the model experiments, the parameters of each of the models used are selected based on the specifications of commercially available discrete components.


Sign in / Sign up

Export Citation Format

Share Document