bounded solutions
Recently Published Documents


TOTAL DOCUMENTS

690
(FIVE YEARS 105)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Houssem Achouri ◽  
Chaouki Aouiti

The main aim of this paper is to study the dynamics of a recurrent neural networks with different input currents in terms of asymptotic point. Under certain circumstances, we studied the existence, the uniqueness of bounded solutions and their homoclinic and heteroclinic motions of the considered system with rectangular currents input. Moreover, we studied the unpredictable behavior of the continuous high-order recurrent neural networks and the discrete high-order recurrent neural networks. Our method was primarily based on Banach’s fixed-point theorem, topology of uniform convergence on compact sets and Gronwall inequality. For the demonstration of theoretical results, we give examples and their numerical simulations.


Author(s):  
Yun Lu ◽  
Bryan McNally ◽  
Emre Shively-Ertas ◽  
Francis J. Vasko

The 0-1 Multidimensional Knapsack Problem (MKP) is a NP-Hard problem that has important applications in business and industry. Approximate solution approaches for the MKP in the literature typically provide no guarantee on how close generated solutions are to the optimum. This article demonstrates how general-purpose integer programming software (Gurobi) is iteratively used to generate solutions for the 270 MKP test problems in Beasley’s OR-Library such that, on average, the solutions are guaranteed to be within 0.094% of the optimums and execute in 88 seconds on a standard PC. This methodology, called the simple sequential increasing tolerance (SSIT) matheuristic, uses a sequence of increasing tolerances in Gurobi to generate a solution that is guaranteed to be close to the optimum in a short time. This solution strategy generates bounded solutions in a timely manner without requiring the coding of a problem-specific algorithm. The SSIT results (although guaranteed within 0.094% of the optimums) when compared to known optimums deviated only 0.006% from the optimums—far better than any published results for these 270 MKP test instances.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2066
Author(s):  
Shyam Sundar Santra ◽  
Hammad Alotaibi ◽  
Samad Noeiaghdam ◽  
Denis Sidorov

This study is connected with the nonoscillatory and oscillatory behaviour to the solutions of nonlinear neutral impulsive systems with forcing term which is studied for various ranges of of the neutral coefficient. Furthermore, sufficient conditions are obtained for the existence of positive bounded solutions of the impulsive system. The mentioned example shows the feasibility and efficiency of the main results.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Eric Avila-Vales ◽  
Ángel G. C. Pérez

In this paper, we propose a diffusive SIR model with general incidence rate, saturated treatment rate and spatially heterogeneous diffusion coefficients. We first prove the global existence of bounded solutions for the model and compute the basic reproduction number. We study the local and global stabilities of the disease-free equilibrium and the uniform persistence. In the case when the diffusion rate of infected individuals is constant, we carry out a bifurcation analysis of equilibria by considering the maximal treatment rate as the bifurcation parameter. Finally, we perform some numerical simulations, which show that the solutions to our model present periodic oscillations for certain values of the parameters.


Sign in / Sign up

Export Citation Format

Share Document