lung cancer cell
Recently Published Documents


TOTAL DOCUMENTS

3071
(FIVE YEARS 601)

H-INDEX

90
(FIVE YEARS 12)

2022 ◽  
Vol 12 ◽  
Author(s):  
Mengyuan Niu ◽  
Bin Zhang ◽  
Li Li ◽  
Zhonglan Su ◽  
Wenyuan Pu ◽  
...  

Lung cancer is one of the most common malignant cancers worldwide. Searching for specific cancer targets and developing efficient therapies with lower toxicity is urgently needed. HPS90 is a key chaperon protein that has multiple client proteins involved in the development of cancer. In this study, we investigated the transcriptional levels of HSP90 isoforms in cancerous and normal tissues of lung cancer patients in multiple datasets. The higher expression of HSP90AA1 in cancer tissues correlated with poorer overall survival was observed. The higher levels of transcription and expression of HSP90AA1 and the activity of AKT1/ERK pathways were confirmed in lung cancer patient tissues. In both human and mouse lung cancer cell lines, knocking down HSP90AA1 promoted cell apoptosis through the inhibition of the pro-survival effect of AKT1 by decreasing the phosphorylation of itself and its downstream factors of mTOR and BAD, as well as downregulating Mcl1, Bcl-xl, and Survivin. The knockdown also suppressed lung cancer cell proliferation by inhibiting ERK activation and downregulating CyclinD1 expression. The treatment of 17-DMAG, an HSP90 inhibitor, recaptured these effects in vitro and inhibited tumor cell growth, and induced apoptosis without obvious side effects in lung tumor xenograft mouse models. This study suggests that targeting HSP90 by 17-DMAG could be a potential therapy for the treatment of lung cancer.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Tanuza Das ◽  
Eun-Young Lee ◽  
Hye Jin You ◽  
Eunice EunKyeong Kim ◽  
Eun Joo Song

AbstractThe deubiquitinating enzyme USP15 is implicated in several human cancers by regulating different cellular processes, including splicing regulation. However, the underlying molecular mechanisms of its functional relevance and the successive roles in enhanced tumorigenesis remain ambiguous. Here, we found that USP15 and its close paralog USP4 are overexpressed and facilitate lung cancer cell proliferation by regulating the alternative splicing of SRSF1. Depletion of USP15 and USP4 impair SRSF1 splicing characterized by the replacement of exon 4 with non-coding intron sequences retained at its C-terminus, resulting in an alternative isoform SRSF1-3. We observed an increased endogenous expression of SRSF1 in lung cancer cells as well, and its overexpression significantly enhanced cancer cell phenotype and rescued the depletion effect of USP15 and USP4. However, the alternatively spliced isoform SRSF1-3 was deficient in such aspects for its premature degradation through nonsense-mediated mRNA decay. The increased USP15 expression contributes to the lung adenocarcinoma (LUAD) development and shows significantly lower disease-specific survival of patients with USP15 alteration. In short, we identified USP15 and USP4 as key regulators of SRSF1 alternative splicing with altered functions, which may represent the novel prognostic biomarker as well as a potential target for LUAD.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Feng Jiang ◽  
Yifang Hu ◽  
Xiaoqin Liu ◽  
Ming Wang ◽  
Chuyan Wu

Background. Recent research has established the existence of epigenetic modulation of the immune response. The possible involvement of RNA-n6-methyladenosine (m6A) alteration in tumor microenvironment (TME) cell invasion, on the other hand, is unknown. Methods. Based on 23 m6A regulators, we examined the alteration patterns of m6A in 629 LUAD tissues and comprehensively connected these modification patterns with TME cell invasion characteristics. The m6A score was calculated, and the m6A modification pattern of a single tumor was quantified using principal component analysis. Then, we further verified the expression of m6A related enzymes and the role hub gene (NOL10) closely related to survival in lung cancer cell lines. Results. Three separate m6A alteration modes have been discovered. TME cell invasion characteristics in the three modes were very similar to the three immunological phenotypes of tumors: immunological rejection, immunological inflammation, and immunological desert. We show that assessing the m6A modification pattern in a single tumor may help predict tumor inflammatory stage, subtype, TME interstitial activity, and prognosis. TME phenotypic inflammation is indicated by a high m6A score, which is characterized by elevated mutation load and immunological activation. The low m6A subtype showed matrix activation and ineffective immune infiltration, indicating that the TME phenotype of noninflammation and immunological rejection had a poor survival probability. Increased neoantigen burden was also linked to a high m6A score. Patients with a higher m6A score saw substantial therapeutic and clinical improvements. And reducing hub gene NOL10 expression substantially inhibited lung cancer cell growth and migration. Conclusions. This research shows that m6A alteration is critical in the creation of TME variety and complexity. The analysis of a single tumor’s m6A alteration pattern will aid in improving our knowledge of TME invasion features and guiding more effective immunotherapy tactics.


2022 ◽  
Vol 12 (1) ◽  
pp. 199-205
Author(s):  
Yanxin Ma ◽  
Dongmei Wang ◽  
Songzhi Luo ◽  
Zhiwei He ◽  
Jiannan Sun

This stud intends to assess whether exosome miR-155-5p derived from human non-small cell lung cancer cells (Hcc827) activates macrophages in lung cancer. Lung cancer Hcc827 cells were assigned into control group and expeirmental group (cultured with macrophages, THP-1 activated by exosome miR-155-5P derived from Hcc827) followed by analysis of macrophage markers inducible nitric oxide synthase (INOS), recombinant human CD163 (CD163), matrix metallopeptidase 9 (MMP9), matrix metallopeptidase 2 (MMP2), and E-cadherin by real-time fluorescent quantitative PCR (RFQ-PCR), IL-10, IL-6 and IL-8 levels by chemiluminescence, cell invasion by Transwell assay and related protein expression by Western blot. miR-155-5p treatment significantly reduced INOS and TNF-β expressions and increased CD163, TNF-α, IL-8, IL-6 and IL-10 expressions along with enhanced cell invasion. In addition, MMP9 and MMP2 expressions in experimental group were significantly increased and E-cdherin was reduced. In conclusion, exosome miR-155-5p derived from lung cancer Hcc827 cells activates macrophages and enhanced lung cancer cell invasion.


Author(s):  
Homa Mollaei ◽  
Farzaneh Karimi ◽  
Morteza Ghorbany ◽  
Mahboubeh Sadat Hosseinzadeh ◽  
Maryam Moudi ◽  
...  

Background: Lung cancer is one of the most common leading causes of mortality and morbidity worldwide. Despite recent advances in therapeutic approaches, common methods are not fully effective. Thus, researchers are looking for some novel complementary agents to improve the effectiveness of therapies. Emerging evidence has shown the antitumor activity of several natural components such as quinoa seed extracts in various types of cancer. Objectives: Hence, this study was conducted to evaluate the antiproliferation and anti-apoptotic activity of quinoa on the A549 lung cancer cell line. Methods: The cell viability of A549 cells treated with quinoa was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of BAX and BCL2 as apoptosis-related genes were assessed using real-time polymerase chain reaction (PCR). Finally, the statistical analysis was performed using GraphPad Prism version 7. Results: Our findings demonstrated that the cell viability decreased in a concentration and time-dependent manner. Also, treating A549 cells with doses of 1.60 and 1.92 mg/mL of quinoa seed extracts could increase BAX and decrease BCL2 expression levels (P < 0.05). However, the higher dose (1.92 mg/mL) was significantly effective. Conclusions: According to this study, quinoa seed extract could induce apoptosis in lung cancer cells (A549) throughout the increased ratio of BAX/BCL2. However, further investigations are required to confirm the results.


Sign in / Sign up

Export Citation Format

Share Document