snow model
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 62)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Fabiana Castino ◽  
Bodo Wichura ◽  
Harald Schellander ◽  
Michael Winkler

<p>The characterization of the snow cover by snow water equivalent (SWE) is fundamental in several environmental applications, e.g., monitoring mountain water resources or defining structural design standards. However, SWE observations are usually rare compared to other snow measurements as snow depth (HS). Therefore, model-based methods have been proposed in past studies for estimating SWE, in particular for short timescales (e.g., daily). In this study, we compare two different approaches for SWE-data modelling. The first approach, based on empirical regression models (ERMs), provides the regional parametrization of the bulk snow density, which can be used to estimate SWE values from HS. In particular, we investigate the performances of four different schemes based on previously developed ERMs of bulk snow density depending on HS, date, elevation, and location. Secondly, we apply the semi-empirical multi-layer Δsnow model, which estimates SWE solely based on snow depth observations. The open source Δsnow model has been recently used for deriving a snow load map for Austria, resulting in an improved Austrian standard. A large dataset of HS and SWE observations collected by the National Weather Service in Germany (DWD) is used for calibrating and validating the models. This dataset consists of daily HS and three-times-a-week SWE observations from in total ~1000 stations operated by DWD over the period from 1950 to 2020. A leave-one-out cross validation is applied to evaluate the performance of the different model approaches. It is based on 185 time series of HS and SWE observations that are representative of the diversity of the regional snow climatology of Germany. Cross validation reveals for all ERMs: 90% of the modelled SWE time series have a root mean square error (RMSE) and a bias lower than 45 kg/m² and 2 kg/m², respectively. The Δsnow model shows the best performance with 90% of the modelled SWE time series having an RMSE lower than 30 kg/m² and bias similar to the ERMs. This comparative study provides new insights on the reliability of model-based methods for estimating SWE values. The results show that the Δsnow model and, to a lower degree, the developed ERMs can provide satisfactory performances even on short timescales. This suggest that these models can be used as reliable alternative to more complex thermodynamic snow models, even more if long-term meteorological observations aside HS are scarce.</p>


2021 ◽  
Author(s):  
Abby C. Lute ◽  
John Abatzoglou ◽  
Timothy Link

Abstract. Seasonal snowpack dynamics shape the biophysical and societal characteristics of many global regions. However, snowpack accumulation and duration have generally declined in recent decades largely due to anthropogenic climate change. Mechanistic understanding of snowpack spatiotemporal heterogeneity and climate change impacts will benefit from snow data products that are based on physical principles, that are simulated at high spatial resolution, and that cover large geographic domains. Existing datasets do not meet these requirements, hindering our ability to understand both contemporary and changing snow regimes and to develop adaptation strategies in regions where snowpack patterns and processes are important components of Earth systems. We developed a computationally efficient physics-based snow model, SnowClim, that can be run in the cloud. The model was evaluated and calibrated at Snowpack Telemetry sites across the western United States (US), achieving a site-median root mean square error for daily snow water equivalent of 62 mm, bias in peak snow water equivalent of −9.6 mm, and bias in snow duration of 1.2 days when run hourly. Positive biases were found at sites with mean winter temperature above freezing where the estimation of precipitation phase is prone to errors. The model was applied to the western US using newly developed forcing data created by statistically downscaling pre-industrial, historical, and pseudo-global warming climate data from the Weather Research and Forecasting (WRF) model. The resulting product is the SnowClim dataset, a suite of summary climate and snow metrics for the western US at 210 m spatial resolution (Lute et al., 2021). The physical basis, large extent, and high spatial resolution of this dataset will enable novel analyses of changing hydroclimate and its implications for natural and human systems.


2021 ◽  
Vol 10 (2) ◽  
pp. 297-312
Author(s):  
Johannes Aschauer ◽  
Christoph Marty

Abstract. Historic measurements are often temporally incomplete and may contain longer periods of missing data, whereas climatological analyses require continuous measurement records. This is also valid for historic manual snow depth (HS) measurement time series, for which even whole winters can be missing in a station record, and suitable methods have to be found to reconstruct the missing data. Daily in situ HS data from 126 nivo-meteorological stations in Switzerland in an altitudinal range of 230 to 2536 m above sea level are used to compare six different methods for reconstructing long gaps in manual HS time series by performing a “leave-one-winter-out” cross-validation in 21 winters at 33 evaluation stations. Synthetic gaps of one winter length are filled with bias-corrected data from the best-correlated neighboring station (BSC), inverse distance-weighted (IDW) spatial interpolation, a weighted normal ratio (WNR) method, elastic net (ENET) regression, random forest (RF) regression and a temperature index snow model (SM). Methods that use neighboring station data are tested in two station networks with different density. The ENET, RF, SM and WNR methods are able to reconstruct missing data with a coefficient of determination (r2) above 0.8 regardless of the two station networks used. The median root mean square error (RMSE) in the filled winters is below 5 cm for all methods. The two annual climate indicators, average snow depth in a winter (HSavg) and maximum snow depth in a winter (HSmax), can be reproduced by ENET, RF, SM and WNR well, with r2 above 0.85 in both station networks. For the inter-station approaches, scores for the number of snow days with HS>1 cm (dHS1) are clearly weaker and, except for BCS, positively biased with RMSE of 18–33 d. SM reveals the best performance with r2 of 0.93 and RMSE of 15 d for dHS1. Snow depth seems to be a relatively good-natured parameter when it comes to gap filling of HS data with neighboring stations in a climatological use case. However, when station networks get sparse and if the focus is set on dHS1, temperature index snow models can serve as a suitable alternative to classic inter-station gap filling approaches.


Author(s):  
Stephen R. Sobie ◽  
Trevor Q. Murdock

Abstract Information about snow water equivalent in southwestern British Columbia is used for flood management, agriculture, fisheries, and water resource planning. This study evaluates whether a process-based, energy balance snow model supplied with high-resolution statistically downscaled temperature and precipitation data can effectively simulate snow water equivalent (SWE) in the mountainous terrain of this region. Daily values of SWE from 1951 to 2018 are simulated at 1 km resolution and evaluated using a reanalysis SWE product (SNODAS), manual snow survey measurements at 41 sites, and automated snow pillows at six locations in the study region. Simulated SWE matches observed inter-annual variability well (R2 > 0.8 for annual maximum SWE) but peak SWE biases of 20% to 40% occur at some sites in the study domain, and higher biases occur where observed SWE is very low. Modelled SWE displays lower bias compared to SNODAS reanalysis at most manual survey locations. Future projections for the study area are produced using 12 downscaled climate model simulations and used to illustrate the impacts of climate change on SWE at 1°C, 2°C, and 3°C of warming. Model results are used to quantify spring SWE changes at different elevations of the Whistler mountain ski resort, and the sensitivity of annual peak SWE in Metro Vancouver municipal watersheds to moderate temperature increases. The results illustrate both the potential utility of a process-based snow model, and identify areas where the input meteorological variables could be improved.


2021 ◽  
Vol 14 (9) ◽  
pp. 5769-5787
Author(s):  
Robin S. Smith ◽  
Steve George ◽  
Jonathan M. Gregory

Abstract. The physical interactions between ice sheets and their surroundings are major factors in determining the state of the climate system, yet many current Earth system models omit them entirely or approximate them in a heavily parameterised manner. In this work we have improved the snow and ice sheet surface physics in the FAMOUS climate model, with the aim of improving the representation of polar climate and implementing a bidirectional coupling to the Glimmer dynamic ice sheet model using the water and energy fluxes calculated by FAMOUS. FAMOUS and Glimmer are both low-resolution, computationally affordable models used for multi-millennial simulations. Glaciated surfaces in the new FAMOUS-ice are modelled using a multi-layer snow scheme capable of simulating compaction of firn and the percolation and refreezing of surface melt. The low horizontal resolution of FAMOUS compared to Glimmer is mitigated by implementing this snow model on sub-grid-scale tiles that represent different elevations on the ice sheet within each FAMOUS grid box. We show that with this approach FAMOUS-ice can simulate relevant physical processes on the surface of the modern Greenland ice sheet well compared to higher-resolution climate models and that the ice sheet state in the coupled FAMOUS-ice–Glimmer system does not drift unacceptably. FAMOUS-ice coupled to Glimmer is thus a useful tool for modelling the physics and co-evolution of climate and grounded ice sheets on centennial and millennial timescales, with applications to scientific questions relevant to both paleoclimate and future sea level rise.


2021 ◽  
pp. 1-21
Author(s):  
Sanne B. M. Veldhuijsen ◽  
Remco J. de Kok ◽  
Emmy E. Stigter ◽  
Jakob F. Steiner ◽  
Tuomo M. Saloranta ◽  
...  

Abstract Recent progress has been made in quantifying snowmelt in the Himalaya. Although the conditions are favorable for refreezing, little is known about the spatial variability of meltwater refreezing, hindering a complete understanding of seasonal snowmelt dynamics. This study aims to improve our understanding about how refreezing varies in space and time. We simulated refreezing with the seNorge (v2.0) snow model for the Langtang catchment, Nepalese Himalaya, covering a 5-year period. Meteorological forcing data were derived from a unique elaborate network of meteorological stations and high-resolution meteorological simulations. The results show that the annual catchment average refreezing amounts to 122 mm w.e. (21% of the melt), and varies strongly in space depending on elevation and aspect. In addition, there is a seasonal altitudinal variability related to air temperature and snow depth, with most refreezing during the early melt season. Substantial intra-annual variability resulted from fluctuations in snowfall. Daily refreezing simulations decreased by 84% (annual catchment average of 19 mm w.e.) compared to hourly simulations, emphasizing the importance of using sub-daily time steps to capture melt–refreeze cycles. Climate sensitivity experiments revealed that refreezing is highly sensitive to changes in air temperature as a 2°C increase leads to a refreezing decrease of 35%.


2021 ◽  
Author(s):  
Michael Schirmer ◽  
Adam Winstral ◽  
Tobias Jonas ◽  
Paolo Burlando ◽  
Nadav Peleg

Abstract. Climate projection studies of future changes in snow conditions and resulting rain-on-snow (ROS) flood events are subject to large uncertainties. Typically, emission scenario uncertainties and climate model uncertainties are included. This is the first study on this topic to also include quantification of natural climate variability, which is the dominant uncertainty for precipitation at local scales with large implications for e.g. runoff projections. To quantify natural climate variability, a weather generator was applied to simulate inherently consistent climate variables for multiple realizations of current and future climates at 100 m spatial and hourly temporal resolution over a 12 × 12 km high-altitude study area in the Swiss Alps. The output of the weather generator was used as input for subsequent simulations with an energy balance snow model. The climate change signal for snow water resources stands out as early as mid-century from the noise originating from the three sources of uncertainty investigated, namely uncertainty in emission scenarios, uncertainty in climate models, and natural climate variability. For ROS events, a climate change signal toward more frequent and intense events was found for an RCP 8.5 scenario at high elevations at the end of the century, consistently with other studies. However, for ROS events with a substantial contribution of snowmelt to runoff (>20 %), the climate change signal was largely masked by sources of uncertainty. Only those ROS events where snowmelt does not play an important role during the event will occur considerably more frequently in the future, while ROS events with substantial snowmelt contribution will mainly occur earlier in the year but not more frequently. There are two reasons for this: first, although it will rain more frequently in midwinter, the snowpack will typically still be too cold and dry and thus cannot contribute significantly to runoff; second, the very rapid decline in snowpack toward early summer, when conditions typically prevail for substantial contributions from snowmelt, will result in a large decrease in ROS events at that time of the year. Finally, natural climate variability is the primary source of uncertainty in projections of ROS metrics until the end of the century, contributing more than 70 % of the total uncertainty. These results imply that both the inclusion of natural climate variability and the use of a snow model, which includes a physically-based processes representation of water retention, are important for ROS projections at the local scale.


2021 ◽  
Vol 15 (9) ◽  
pp. 4241-4259
Author(s):  
Annelies Voordendag ◽  
Marion Réveillet ◽  
Shelley MacDonell ◽  
Stef Lhermitte

Abstract. Physically based snow models provide valuable information on snow cover evolution and are therefore key to provide water availability projections. Yet, uncertainties related to snow modelling remain large as a result of differences in the representation of snow physics and meteorological forcing. While many studies focus on evaluating these uncertainties, no snow model comparison has been done in environments where sublimation is the main ablation process. This study evaluates a case study in the semi-arid Andes of Chile and aims to compare two snow models with different complexities, SNOWPACK and SnowModel, at a local point over one snow season and to evaluate their sensitivity relative to parameterisation and forcing. For that purpose, the two models are forced with (i) the most ideal set of input parameters, (ii) an ensemble of different physical parameterisations, and (iii) an ensemble of biased forcing. Results indicate large uncertainties depending on forcing, the snow roughness length z0, albedo parameterisation, and fresh snow density parameterisation. The uncertainty caused by the forcing is directly related to the bias chosen. Even though the models show significant differences in their physical complexity, the snow model choice is of least importance, as the sensitivity of both models to the forcing data was on the same order of magnitude and highly influenced by the precipitation uncertainties. The sublimation ratio ranges are in agreement for the two models: 36.4 % to 80.7 % for SnowModel and 36.3 % to 86.0 % for SNOWPACK, and are related to the albedo parameterisation and snow roughness length choice for the two models.


2021 ◽  
Author(s):  
Johannes Aschauer ◽  
Christoph Marty

Abstract. Historic measurements are often temporally incomplete and may contain longer periods of missing data whereas climatological analyses require continuous measurement records. This is also valid for historic manual snow depth (HS) measurement time series, where even whole winters can be missing in a station record and suitable methods have to be found to reconstruct the missing data. Daily in-situ HS data from 126 nivo-meteorological stations in Switzerland in an altitudinal range of 230 to 2536 m above sea level is used to compare six different methods for reconstructing long gaps in manual HS time series by performing a "leave-one-winter-out" cross-validation in 21 winters at 33 evaluation stations. Synthetic gaps of one winter length are filled with bias corrected data from the best correlated neighboring station (BSC), inverse distance weighted (IDW) spatial interpolation, a weighted normal ratio (WNR) method, Elastic Net (ENET) regression, Random Forest (RF) regression and a temperature index snow model (SM). Methods that use neighboring station data are tested in two station networks with different density. The ENET, RF, SM and WNR methods are able to reconstruct missing data with a coefficient of determination (r2) above 0.8 regardless of the two station networks used. Median RMSE in the filled winters is below 5 cm for all methods. The two annual climate indicators, average snow depth in a winter (HSavg) and maximum snow depth in a winter (HSmax), can be well reproduced by ENET, RF, SM and WNR with r2 above 0.85 in both station networks. For the inter-station approaches, scores for the number of snow days with HS ≥ 1 cm (dHS1) are clearly weaker and except for BCS positively biased with RMSE of 18–33 days. SM reveals the best performance with r2 of 0.93 and RMSE of 15 days for dHS1. Snow depth seems to be a relatively good-natured parameter when it comes to gap filling of HS data with neighboring stations in a climatological use case. However, when station networks get sparse and if the focus is set on dHS1, temperature index snow models can serve as a suitable alternative to classic inter-station gap filling approaches.


2021 ◽  
Vol 13 (10) ◽  
pp. 2002
Author(s):  
Hannah Vickers ◽  
Eirik Malnes ◽  
Ward J. J. van Pelt ◽  
Veijo A. Pohjola ◽  
Mari Anne Killie ◽  
...  

Reliable and accurate mapping of snow cover are essential in applications such as water resource management, hazard forecasting, calibration and validation of hydrological models and climate impact assessments. Optical remote sensing has been utilized as a tool for snow cover monitoring over the last several decades. However, consistent long-term monitoring of snow cover can be challenging due to differences in spatial resolution and retrieval algorithms of the different generations of satellite-based sensors. Snow models represent a complementary tool to remote sensing for snow cover monitoring, being able to fill in temporal and spatial data gaps where a lack of observations exist. This study utilized three optical remote sensing datasets and two snow models with overlapping periods of data coverage to investigate the similarities and discrepancies in snow cover estimates over Nordenskiöld Land in central Svalbard. High-resolution Sentinel-2 observations were utilized to calibrate a 20-year MODIS snow cover dataset that was subsequently used to correct snow cover fraction estimates made by the lower resolution AVHRR instrument and snow model datasets. A consistent overestimation of snow cover fraction by the lower resolution datasets was found, as well as estimates of the first snow-free day (FSFD) that were, on average, 10–15 days later when compared with the baseline MODIS estimates. Correction of the AVHRR time series produced a significantly slower decadal change in the land-averaged FSFD, indicating that caution should be exercised when interpreting climate-related trends from earlier lower resolution observations. Substantial differences in the dynamic characteristics of snow cover in early autumn were also present between the remote sensing and snow model datasets, which need to be investigated separately. This work demonstrates that the consistency of earlier low spatial resolution snow cover datasets can be improved by using current-day higher resolution datasets.


Sign in / Sign up

Export Citation Format

Share Document