light conditions
Recently Published Documents


TOTAL DOCUMENTS

2135
(FIVE YEARS 614)

H-INDEX

56
(FIVE YEARS 11)

2024 ◽  
Vol 84 ◽  
Author(s):  
L. R. Silva ◽  
A. P. C. Moura ◽  
B. V. Gil ◽  
A. Rohr ◽  
S. M. Z. Almeida ◽  
...  

Abstract Understanding morphological and physiological changes under different light conditions in native fruit species in juveniles’ stage is important, as it indicate the appropriate environment to achieve vigorous saplings. We aimed to verify growth and morphophysiological changes under shade gradient in feijoa (Acca sellowiana (O. Berg) Burret) to achieve good quality saplings adequate to improve cultivation in orchards. The saplings were grown for twenty-one-month under four shading treatments (0%, 30%, 50%, and 80%). Growth, photosynthetic pigments, gas exchanges, chlorophyll fluorescence, and leaf anatomy parameters were evaluated. Saplings under full sun and 30% shade had higher height and diameter growth and dry mass accumulation due to higher photosynthesis rate. As main acclimatization mechanisms in feijoa saplings under 80% shade were developed larger leaf area, reduced leaf blade thickness, and enhanced quantum yield of photosystem II. Even so, the net CO2 assimilation and the electron transport rate was lower and, consequently, there was a restriction on the growth and dry mass in saplings under deep shade. Therefore, to obtain higher quality feijoa saplings, we recommend that it be carried out in full sun or up to 30% shade, to maximize the sapling vigor in nurseries and, later, this light environment can also be used in orchards for favor growth and fruit production.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Darius Kviklys ◽  
Jonas Viškelis ◽  
Mindaugas Liaudanskas ◽  
Valdimaras Janulis ◽  
Kristina Laužikė ◽  
...  

Modern apple orchard systems should guarantee homogeneity of fruit internal and external qualities and fruit maturity parameters. However, when orchards reach productive age, a variation of these parameters takes place and mostly it is related to uneven light distribution within the tree canopy. The aim of the study was to evaluate the canopy position’s effect on fruit internal and external quality parameters. This is the first study where all the main fruit quality and maturation parameters were evaluated on the same trees and were related to the light conditions and photosynthetic parameters. Four fruit positions were tested: top of the apple tree, lower inside part of the canopy, and east and west sides of the apple tree. Fruit quality variability was significant for fruit size, blush, colour indices, total sugar content, dry matter concentration, accumulation of secondary metabolites and radical scavenging activity. Fruit position in the canopy did not affect flesh firmness and fruit maturity parameters such as the starch index, Streif index and respiration rate. At the Lithuanian geographical location (55°60’ N), significantly, the highest fruit quality was achieved at the top of the apple tree. The tendency was established that apple fruits from the west side of the canopy have better fruit quality than from the east side and it could be related to better light conditions at the west side of the tree. Inside the canopy, fruits were distinguished only by the higher accumulation of triterpenic compounds and higher content of malic acid. Light is a main factor of fruit quality variation, thus all orchard management practices, including narrow two-dimensional tree canopies and reflecting ground covers which improve light penetration through the tree canopy, should be applied.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ning Wang ◽  
Tianyu Ji ◽  
Xiao Liu ◽  
Qiang Li ◽  
Kulihong Sairebieli ◽  
...  

Seedlings in regenerating layer are frequently attacked by herbivorous insects, while the combined effects of defoliation and shading are not fully understood. In the present study, two Leguminosae species (Robinia pseudoacacia and Amorpha fruticosa) were selected to study their responses to combined light and defoliation treatments. In a greenhouse experiment, light treatments (L+, 88% vs L−, 8% full sunlight) and defoliation treatments (CK, without defoliation vs DE, defoliation 50% of the upper crown) were applied at the same time. The seedlings’ physiological and growth traits were determined at 1, 10, 30, and 70 days after the combined treatment. Our results showed that the effects of defoliation on growth and carbon allocation under high light treatments in both species were mainly concentrated in the early stage (days 1–10). R. pseudoacacia can achieve growth recovery within 10 days after defoliation, while A. fruticosa needs 30 days. Seedlings increased SLA and total chlorophyll concentration to improve light capture efficiency under low light treatments in both species, at the expense of reduced leaf thickness and leaf lignin concentration. The negative effects of defoliation treatment on plant growth and non-structural carbohydrates (NSCs) concentration in low light treatment were significantly higher than that in high light treatment after recovery for 70 days in R. pseudoacacia, suggesting sufficient production of carbohydrate would be crucial for seedling growth after defoliation. Plant growth was more sensitive to defoliation and low light stress than photosynthesis, resulting in NSCs accumulating during the early period of treatment. These results illustrated that although seedlings could adjust their resource allocation strategy and carbon dynamics in response to combined defoliation and light treatments, individuals grown in low light conditions will be more suppressed by defoliation. Our results indicate that we should pay more attention to understory seedlings’ regeneration under the pressure of herbivorous insects.


Elem Sci Anth ◽  
2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Karley Campbell ◽  
B. A. Lange ◽  
J. C. Landy ◽  
C. Katlein ◽  
M. Nicolaus ◽  
...  

The net productivity of sea ice is determined by the physical and geochemical characteristics of the ice–ocean system and the activity of organisms inhabiting the ice. Differences in habitat suitability between first-year and multi-year sea ice can affect the ice algal community composition and acclimation state, introducing considerable variability to primary production within each ice type. In this study, we characterized the biogeochemical variability between adjacent first-year and multi-year sea ice floes in the Lincoln Sea of the Canadian High Arctic, during the May 2018 Multidisciplinary Arctic Program—Last Ice sampling campaign. Combining measurements of transmitted irradiance from a remotely operated underwater vehicle with laboratory-based oxygen optode incubations, this work shows widespread heterotrophy (net oxygen uptake) in the bottom 10 cm of both ice types, particularly in thick multi-year ice (>2.4 m) and early morning of the 24-h day. Algal acclimation state and species composition varied between ice types despite similar net community production due to widespread light and nutrient limitation. The first-year ice algal community was increasingly dominated over spring by the potentially toxin-producing genus Pseudonitzschia that was acclimated to high and variable light conditions characteristic of a thinner ice habitat with mobile snow cover. In comparison, the multi-year ice harbored more shade-acclimated algae of mixed composition. This work highlights the potential for heterotrophy in sea ice habitats of the High Arctic, including first measurements of such O2-uptake in multi-year ice floes. Observed differences in photophysiology between algae of these sea ice types suggests that a shift toward higher light availability and a younger sea ice cover with climate change does not necessarily result in a more productive system. Instead, it may favor future sea ice algal communities of different species composition, with lower photosynthetic potential but greater resilience to stronger and more variable light conditions.


Author(s):  
Ruiqi Zheng ◽  
Zhancang Ma ◽  
Li Jiang ◽  
Zhenyong Zhao ◽  
Xiang Shi ◽  
...  

Tamarix ramosissima has bi-seasonal flowering and fruiting. Although the basic germination characteristics of T. ramosissima seeds have been evaluated, there is a lack of information about the effects of seed plumpness on germination. Effects of seed plumpness and season of maturity and light conditions on germination were tested. Plump seeds matured in spring or summer had similar size and pappus length. The size of plump seeds was significantly larger than that of shriveled seeds. Both types of seeds matured in summer germinated better than seeds matured in spring. Germination percentage of plump seeds was significant higher than that of shriveled seeds, especially for seeds matured in spring. Darkness significantly decreased the germination of seeds matured in summer. This study provides comprehensive information about the seed germination requirements of T. ramosissima and the results can be used in restoration of desert lands.


REINWARDTIA ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 69-75
Author(s):  
Zinnirah Shabdin ◽  
Hollena Nori ◽  
Kalu Meekiong ◽  
Mohammad Fajaruddin Mohd Faiz

SHABDIN, Z., NORI, H., MEEKIONG, K. & FAIZ, M. F. M. 2021. Evaluating the ecophysiology of survival for Mapania cuspidata (Miq.) Uittien (Cyperaceae) transplantation. Reinwardtia 20(2): 69–75. — This study aimed to investigate the ecology of the sedge Mapania cuspidata at three different locations in East Malaysia, namely Gunung Gading, Matang and Bengoh, and the survival of M. cuspidata transplanted in pots exposed to different light intensities in Universiti Malaysia Sarawak, East Malaysia. The highest species density was recorded in Matang with a total density of 1.98 individuals/ha followed by Bengoh (1.42) and Gunung Gading (0.96). In these locations, the soil pH ranged from 4.9 in Bengoh to 5.7 in Matang where as soil organic matter content was between 3.47% in Bengoh and 8.68% in Gunung Gading. The highest light intensity was recorded in Matang with 0.94 kLux, and produced plants with the highest chorophyll content (64.8 SPAD value). This study found that the transplanted M. cuspidata had 90% survival over a four month experiment, produced ~ 8 new leaves, took an average of 15.8 days to produce a new leaf and had a chlorophyll content of ~30.3 SPAD value regardless of the intensity of light where the plants were exposed to. The findings of this study suggests that M. cuspidata can grow well in any light conditions and therefore it is also possible to transplant and re-establish other Mapania species in new location. It is hoped that the initiative to relocateother Mapania species of concervation concern will be effective if adequate post-harvest handling methods are practiced.


2021 ◽  
Vol 7 (12) ◽  
pp. 111589-111602
Author(s):  
Karina Penha Andrade Costa ◽  
Florine Alves de Sousa Pinheiro ◽  
Amanda Cristine Abreu Silva ◽  
Amanda Laís Enes Costa ◽  
Juliano Dos Santos ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 194
Author(s):  
Tao Li ◽  
Rui Wu ◽  
Zhixin Liu ◽  
Jiajing Wang ◽  
Chenxi Guo ◽  
...  

The chloroplast is a key organelle for photosynthesis and perceiving environmental information. GENOME UNCOUPLED 4 (GUN4) has been shown to be required for the regulation of both chlorophyll synthesis, reactive oxygen species (ROS) homeostasis and plastid retrograde signaling. In this study, we found that growth of the gun4 mutant was significantly improved under medium strong light (200 μmol photons m−2s−1) compared to normal light (100 μmol photons m−2s−1), in marked contrast to wild-type (WT). Further analysis revealed that GUN4 interacts with SIGNAL RECOGNITION PARTICLE 54 KDA SUBUNIT (SRP43) and SRP54. RNA-seq analysis indicated that the expression of genes for light signaling and the circadian clock is altered in gun4 compared with (WT). qPCR analysis confirmed that the expression of the clock genes CLOCK-RELATED 1 (CCA1), LATE ELONGATION HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1 (TOC1) and PSEUDO RESPONSE REGULATOR 7 (PRR7) is significantly changed in the gun4 and srp54 mutants under normal and medium strong light conditions. These results suggest that GUN4 may coordinate the adaptation of plants to changing light conditions by regulating the biological clock, although it is not clear whether the effect is direct or indirect.


Sign in / Sign up

Export Citation Format

Share Document