fine earth
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
Dmitrii A. Ganyushkin ◽  
Sofya N. Lesovaya ◽  
Dmitrii Y. Vlasov ◽  
Gennady P. Kopitsa ◽  
László Almásy ◽  
...  

For the Altai mountainous region, especially the arid south-eastern part, the history of glacier fluctuations in Pleistocene and Holocene is still poorly known. The key plots were located in the Kargy valley (2288-2387 m a. s. l.) that is not currently affected by glaciations. The relative dating method was applied to define Pleistocene moraine chronology and configuration in the Kargy valley. Taking into account that relative dating methods are primarily based on weathering pat-terns, the mineralogy, porosity, and specificity of biological colonization as an agent of weath-ering were obtained for the moraine samples. Three moraine groups of different age (presumably MIS 6, MIS 4, and MIS 2) were identifies based on detailed investigation of morphological features. The moraine age was indirectly confirmed by the mesostructure of the moraine samples repre-sented by fine-grained shale: the older sample is characterized by a more developed fractal sur-face than the younger one. The growth of biota (crustose lichen and micromycetes) leads to initial biomass accumulation and subsequent rock disintegration. The accumulation of autochthonous fine earth on the rock surface was considered the initial stage of fine earth formation affected by biota.


2021 ◽  
Vol 5 ◽  
pp. 37-43
Author(s):  
N. N. Vorobyev ◽  

The results of lithological studies of Quaternary deposits in the coastal outcrops of the valley of the lower course of the river are presented. Pechora. In the latitudinal section of the Pechora, two horizons of boulder loams (moraines) and underlying horizons, dividing or overlapping the moraine strata, are exposed to intermoraine sediments of fluvial genesis. Based on the results of lithological studies of textural, granulometric and mineralogical features of fine earth of deposits and petrographic composition of coarse material, it was concluded that material was supplied during the formation of moraines from different terrigenous-mineralogical provinces. The formation of the lower Pechora (Dnieper) moraine is associated with the North-Eastern feeding province, and the upper Moscow (Vychegda) moraine, with the North-West Fennoscandian center of glaciation. The glacial genesis of boulder loams has been confirmed.


Soil Systems ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 21
Author(s):  
Hermin Saki ◽  
Haojie Liu ◽  
Bernd Lennartz

Soil–phosphorus interactions are frequently studied employing the slurry technique, in which soil samples are intensively mixed with phosphate solutions of various concentrations. The result of such experiments is a “phosphate sorption potential” because the thorough mixing of soil and phosphate solution as obtained by overhead or horizontal shaking of the slurry would probably not occur under natural conditions, especially if the soil is structured. Here, we wanted to test the impact of soil structure on phosphorus (P) removal from aqueous solution. Soil aggregates of a defined size class were prepared by carefully sieving the soil. The soil aggregates were individually wrapped in an inert fabric and placed on a sieve, which was lowered into a basin containing a phosphate solution of a given concentration. The decrease of the phosphate solution concentration with time was registered at fixed intervals, and adsorbed amounts were quantified by differences between initial concentrations and concentrations at the time of sampling. Pre-tests on fine earth revealed that sorption was more pronounced in the classical slurry batch experiment than in the approach used in this study. Differences between methods were more pronounced at lower initial phosphate concentrations. The increase in P sorption in the classical batch experiment continued over 24 h to 140 mg kg−1, while the adsorbed P amount remained constant (64 mg kg−1) after 6 h in the diffusion experiment. Interestingly, it was observed that the sorption onto soil aggregates was elevated as compared to unstructured fine earth. The sorption capacity of aggregates was approximately one third higher than that of the fine earth samples according to optimized Freundlich adsorption coefficients. This was unexpected since it was assumed that the soil surface area available for sorption processes is greater or at least far more accessible if the unstructured fine earth is exposed to the phosphate solution. We conclude that if the inner pore space of soil aggregates is readily accessible and diffusion is not hindered, the overall retention capacity of intact aggregates might be higher than that of the disturbed soil because the intra-aggregate pore space can accommodate a certain fraction of phosphate in addition to the adsorbed amount at particle surfaces. The presented experimental approach allows for studying sorption processes in well-structured and fine earth in conditions that perform better compared to the natural situation. Additional testing of the method for different soil types is advisable.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 440
Author(s):  
Nerea Arias ◽  
Iñigo Virto ◽  
Alberto Enrique ◽  
Paloma Bescansa ◽  
Riley Walton ◽  
...  

Stony soils are distributed all over the world. The study of their characteristics has gained importance lately due to their increasing use as agricultural soils. The effect that rock fragments exert on the soil hydraulic properties is difficult to measure in situ, and is usually derived from the fine earth properties. However, the corrections used so far do not seem accurate for all types of stony soils. Our objective was to assess the adequacy of estimating the hydraulic properties of a stony soil from the fine earth ones by correcting the latter by the volume occupied by rock fragments. To do that, we first assessed the validity of different approaches for estimating the hydraulic properties of a stone-free and a stony (40% rock fragments) cylinder prepared with samples from the same silt loam soil. The functions relating to the soil hydraulic properties (θ-h, K-h-θ) were estimated by the Wind method and by inverse estimation, using data from an evaporation experiment where the soil water content and pressure head were measured at different soil depths over time. Results from the evaporation experiment were compared to those obtained by applying the equation that corrects fine earth properties by the rock fragments volume. Wind and the Inverse Estimation methods were successfully applied to estimate soil water content and hydraulic conductivity from the stony soil experiment, except for some uncertainties caused by the limited range of suction in which the experiment was conducted. The application of an equation for adjusting the soil water content at different pressure heads (allowing for defining the soil water retention curve, SWRC), and the unsaturated hydraulic conductivity (K) directly from the stone content was not satisfactory. K values obtained from the measured data were higher than those inferred by the correcting equation in the wet range, but decreased much faster with a decreasing pressure head. The use of this equation did therefore not take into account the effect that the creation of lacunar pores by the presence of rock fragments likely exerts on water flow processes. The use of such correction needs therefore to be revised and new approaches are needed for estimating the hydraulic conductivity in stony soils. In relation to SWRC, a new equation to calculate the water content of a stony soil accounting for the influence of possible lacunar pores is proposed.


2017 ◽  
Vol 63 (2-3) ◽  
pp. 79-90 ◽  
Author(s):  
Juraj Bebej ◽  
Marián Homolák ◽  
Tomáš Orfánus

AbstractWe performed field experiment with 10 g l−1concentration of Brilliant Blue solutes in 100 l of water sprinkling on 1 × 1 m surface of the Dystric Cambisol. Consequently, four vertical profiles were exposed at experimental plot after 2 hours (CUT 2), 24 hours (CUT 24), 27 hours (CUT 27) and after 504 hours (CUT 504) in order to analyse spatiotemporal interactions among the BB solution (Na-salts), soil exchangeable complex and fine earth soil (%) samples extracted from both the high and low coloured zones located around the optically visualised macropore preferred flow (PF) zones. The concentration changes were quantifying via soil profiles not affected by BB (termed as REF) located in the close vicinity of experimental plot. Observed changes in pH (H2O), chemical composition of fineearth soil, as well as in concentration of Na+in soil exchangeable complex to suggest, the BB dye solution didn’t represent an inert tracer, but compounds strongly involved in reaction with surrounding soils. Recorded chemical trends seems to be the result both the competitive processes between the Na+ of BB dye solution and composition of surrounding soil exchangeable complex, as well and the spatial-temporal controlled mechanism of dye solution transfer in soil.


2017 ◽  
Vol 7 (1) ◽  
pp. 18-33
Author(s):  
Vítězslav Vlček ◽  
David Juřička ◽  
Jitka Míková

This paper evaluated the heavy metal concentration in fine earth and skeleton fraction of the Antarctic soil and sediments in the Admiralty Bay (King George Island); Livingston Island; Whaler´s Bay (Deception Island); James Ross Island and the Trinity peninsula (Antarctica). Total concentrations of eight elements (arsenic, chromium, copper, nickel, lead, strontium, vanadium, and zinc) were determined in sixteen sediments/soils samples and skeleton fraction. For the analyses, eight samples were taken from James Ross Island, four samples from Deception Island, two samples from Trinity peninsula, one sample from Livingston Island, and one sample from King George Island. The contents the elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). Most affected by human activity was the sample collected near permanent station General Bernardo O'Higgins Riquelme - Chile on Trinity peninsula. On this site, the highest concentration of copper in fine-earth (201 ppm), zinc in skeleton (163 ppm) and fine-earth (771 ppm) and strontium in skeleton (733 ppm) and fine-earth (1297 ppm) were found. This location was also exceptional by the residues of penguins’ eggs shells and excrements. Samples of skeleton had significantly higher maximum values of analyzed elements compare to the available literature data. Results from all sampled localities are summarized in the text.


Solid Earth ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 897-903 ◽  
Author(s):  
Mavinakoppa S. Nagaraja ◽  
Ajay Kumar Bhardwaj ◽  
G. V. Prabhakara Reddy ◽  
Chilakunda A. Srinivasamurthy ◽  
Sandeep Kumar

Abstract. Soil fertility and organic carbon (C) stock estimations are crucial to soil management, especially that of degraded soils, for productive agricultural use and in soil C sequestration studies. Currently, estimations based on generalized soil mass (hectare furrow basis) or bulk density are used which may be suitable for normal agricultural soils, but not for degraded soils. In this study, soil organic C, available nitrogen (N), available phosphorus (P2O5) and available potassium (K2O), and their stocks were estimated using three methods: (i) generalized soil mass (GSM, 2 million kg ha−1 furrow soil), (ii) bulk-density-based soil mass (BDSM) and (iii) the proportion of fine earth volume (FEV) method, for soils sampled from physically degraded lands in the eastern dry zone of Karnataka State in India. Comparative analyses using these methods revealed that the soil organic C, N, P2O and K2O stocks determined by using BDSM were higher than those determined by the GSM method. The soil organic C values were the lowest in the FEV method. The GSM method overestimated soil organic C, N, P2O and K2O by 9.3–72.1, 9.5–72.3, 7.1–66.6 and 9.2–72.3 %, respectively, compared to FEV-based estimations for physically degraded soils. The differences among the three methods of estimation were lower in soils with low gravel content and increased with an increase in gravel volume. There was overestimation of soil organic C and soil fertility with GSM and BDSM methods. A reassessment of methods of estimation was, therefore, attempted to provide fair estimates for land development projects in degraded lands.


Sign in / Sign up

Export Citation Format

Share Document