seismic loading
Recently Published Documents


TOTAL DOCUMENTS

866
(FIVE YEARS 232)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 252 ◽  
pp. 113661
Author(s):  
Wei Li ◽  
Dan-Yang Ma ◽  
Li-Feng Xu ◽  
Wei-Wu Qian

Author(s):  
Mohit Bharat Dange

Abstract: Pile foundations are widely employed for a variety of structures on shaky ground. The importance of seismic design in ensuring the effective operation of a structure under severe seismic loading conditions cannot be overstated. For the analysis of seismic forces on a structure, IS 1893 will be employed. This research entails the choosing of a specific form of building structure. A comparison of buildings with and without pile foundations will be shown. Because of the differences in their properties, the seismic behaviour of the various structures differs. The influence of pile stiffness on the structure's seismic response will be investigated. The rigidity of the piling foundation could have an impact on the structure.With the rise in seismic activity, there may be a need for more efficient pile foundation design to withstand earthquake loads. The major goal of this study is to compare pile stiffness with changes in diameter and zone. Keywords: Pile Foundation, STAAD-Pro, Structure, Stiffness, zone, Pile Cap, Load Estimation, Pile cap, Pattern of Pile.


Author(s):  
S. V. Koval ◽  
A. V. Kuzminov ◽  
P. A. Rodin ◽  
N. M. Sidorov

Various approaches are used for simulating seismic loading and collaboration of a structure and a bearing stratum when carrying out dynamic seismic analysis in specialized software. In the present work, the kinematic parameters of various structures and bearing stratum were calculated using SCAD and STAR_T software. Seismic performance of a reference tower type supporting frame was calculated for 7 grade earthquake. As a result, the floor accelerograms were calculated, and the floor response spectra were built. The calculation results obtained by various methods and structure models were analyzed and compared.


2021 ◽  
Vol 27 (12) ◽  
pp. 1-12
Author(s):  
Haider N. Abdul Hussein ◽  
Qassun S. Mohammed Shafiqu ◽  
Zeyad S. M. Khaled

Experimental model was done for pile model of L / D = 25 installed into a laminar shear box contains different saturation soil densities (loose and dense sand) to evaluate the variation of pore water pressure before and after apply seismic loading. Two pore water pressure transducers placed at position near the middle and bottom of pile model to evaluate the pore water pressure during pullout tests. Seismic loading applied by uniaxial shaking table device, while the pullout tests were conducted through pullout device. The results of changing pore water pressure showed that the variation of pore water pressure near the bottom of pile is more than variation near the middle of pile in all tests. The variation of pore water pressure after apply seismic loading is more than the variation before apply seismic loading near the middle of pile and near the bottom of pile and in loose and dense sand. Variation of pore water pressure after apply seismic loading and uplift force is less than the variation after apply seismic loading in loose sand at middle and bottom of pile.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 105-119
Author(s):  
Jianrong Pan ◽  
Ruike Huang ◽  
Jing Xu ◽  
Peng Wang ◽  
Zhan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document