oxygen and carbon isotopes
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 11)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Janica C. Bühler ◽  
Josefine M. Axelsson ◽  
Franziska A. Lechleitner ◽  
Jens Fohlmeister ◽  
Allegra N. LeGrande ◽  
...  

Abstract. The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modelled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modelled water isotopologues, and indeed the diversity of their representation in different models are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable paleoclimate archive and provide well preserved (semi-)continuous multivariate isotope time series in the lower and mid-latitudes, and are, therefore, well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationship between speleothem oxygen and carbon isotopes to climate variables also depends on site-specific parameters, and their comparison to GCMs is not always straightforward. Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and AnaLysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISS-E2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 common era, CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for both modelled and measured isotopes. We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modelled temperatures. At low latitudes, precipitation amount is the dominant driver for water isotope variability, however, at cave locations the agreement between modelled temperature variability is higher than for precipitation variability. While modelled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes, and may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems, although to varying extent. We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach, whenever comparing proxy data to modelled data. Considering karst and cave internal processes through e.g. isotope-enabled karst models may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using e.g. different isotopes, different climate archives, or time periods.


2020 ◽  
Vol 8 ◽  
Author(s):  
Tito Arosio ◽  
Malin Michelle Ziehmer-Wenz ◽  
Kurt Nicolussi ◽  
Christian Schlüchter ◽  
Markus Leuenberger

The analysis of the stable isotope of the tree-ring cellulose is an important tool for paleo climatic investigations. Long tree-ring chronologies consist predominantly of oaks and conifers in Europe, including larch trees (Larix decidua) and cembran pines (Pinus cembra) that form very long tree ring chronologies in the Alps and grow at the treeline, where tree growth is mainly determined by temperature variations. We analyzed δ13C, δ18O and δ2H isotopes in the cellulose extracted from tree-rings of wood samples collected at high altitude in the Swiss and Tyrol Alps, covering the whole Holocene period. We found that larch cellulose was remarkably more depleted in deuterium than that of cembran pine, with mean δ2H values of −113.4 ± 9.7‰ for larch and of −65.4 ± 11.3‰ for cembran pine. To verify if these depleted values were specific to larch or a property of the deciduous conifers, we extended the analysis to samples from various living conifer species collected at the Bern Botanical Garden. The results showed that not only the larch, but also all the samples of the deciduous larch family had a cellulose composition that was highly depleted in δ2H with regard to the other evergreen conifers including cembran pine, a difference that we attribute to a faster metabolism of the deciduous conifers. The δ18O values were not statistically different among the species, in agreement with the hypothesis that they are primary signals of the source water. While the δ13C values were slightly more depleted for larch than for cembran pine, likely due to metabolic differences of the two species. We conclude that the deciduous larch conifers have specific metabolic hydrogen fractionations and that the larch unique signature of δ2H is useful to recognize it from other conifers in subfossil wood samples collected for paleoclimatic studies. For climate information the absolute δ2H values of larch should be considered carefully and separate from other species.


2020 ◽  
Author(s):  
Julius Jara-Muñoz ◽  
Amotz Agnon ◽  
Jens Fohlmeister ◽  
Jürgen Mey ◽  
Norbert Frank ◽  
...  

<p><span>High-resolution records of lake-level changes are crucial to elucidate the impact of local and global climatic changes in lacustrine basins. The Late Quaternary evolution of the Dead Sea has been characterized by substantial variability apparently linked with global climatic changes, beign subject of many research efforts since decades. Previous studies have defined two main lake phases, the Lake Lisan and the Dead Sea, the earlier was a highstand period that lasted between ~70 and ~15 ka, the  latter was the lowstand period that persisted until the present. Here we focus on the switch between Lake Lisan and Dead Sea studying fossil lake shorelines, a sequence that comprises dozens of levels exposed along the rims of the Dead Sea, containing abundant fossil stromatolites that we dated by mean of radiocarbon and U-decay series. We determined 90 radiocarbon and 35 U-Th ages from stromatolites from almost every shoreline level. We compared U-Th and radiocarbon ages to estimating a radiocarbon reservoir between 0.2 and 0.8 ka, used to correct the remaining radiocarbon ages before calibration. The resulting ages range between ~45  and ~20 ka. Dating was </span><span>complemented with analysis of stable oxygen and carbon isotopes. Furthermore, we applied a distributed hydrological balance model to constrain past precipitation and temperature conditions. Our results suggest that the duration of the last Lake Lisan highstand was shorter than previously estimated. Taking this at face value, the switch between Lake Lisan and Dead Sea occurred at ~28 ka, ~10 ka earlier than previously suggested. Oxygen and carbon isotopes show a consistent pattern, displaying a switch between wet and dry conditions at ~28 ka. Preliminary results from the hydrological model indicate a much stronger sensitivity of the lake level to precipitation amounts than to air temperature. From our results we can’t observe a clear link between global temperature variations and lake-level changes in the Lisan/Dead Sea lakes. Similar non-linear response to northern hemisphere climatic changes have been also documented in Holocene Dead Sea paleoclimatic records, suggesting that global climatic variations may led to variable lake-level responses. The results of this study adds further complexity to the understanding of factors controlling climate variability in the Dead Sea. </span></p>


2020 ◽  
Author(s):  
Le Kong

<p><strong>         </strong>Cold-water corals represent an intriguing paleoceanographic archive with a great potential to reconstruct high-resolution paleoenvironmental changes. Compared to those of shallow-water corals, proxies derived from cold-water corals have been complicated by biologically mediated vital effects. The oxygen and carbon stable isotope compositions of cold-water coral skeletons are more depleted than the expected carbonate-seawater equilibrium values by ~4–6‰ and ~10‰, respectively. Therefore, it is necessary to correct for the vital effect before using δ<sup>18</sup>O as a temperature proxy. δ<sup>18</sup>O and δ<sup>13</sup>C of cold-water corals exhibit strong linear correlations after adjusting for ambient seawater δ<sup>18</sup>O and δ<sup>13</sup>C values. The δ<sup>18</sup>O intercepts of this linear regression were found to be correlated with water temperatures. This so-called ‘intercept method’ can therefore be used to reconstruct temperatures variations of intermediate and deep oceans. Moreover, sampling along the growing bands of cold-water corals can provide samples to generate temperature sequences. After that, three geochemical models have been proposed to explain the δ<sup>18</sup>O and δ<sup>13</sup>C depletion of cold-water corals. However, none of them can explain the behavior of all geochemical parameters. In future, more analyses and experiments at micro-scales are required to adjust these geochemical models or propose new ones.</p>


2020 ◽  
Author(s):  
Kelly E. Cronin ◽  
◽  
David P. Gillikin ◽  
Sally E. Walker ◽  
Stephen Camarra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document