double immunofluorescence
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 30)

H-INDEX

34
(FIVE YEARS 1)

2022 ◽  
Vol 15 ◽  
Author(s):  
Lukas Dehe ◽  
Shaaban A. Mousa ◽  
Noureddin Aboryag ◽  
Mohammed Shaqura ◽  
Antje Beyer ◽  
...  

Recent interest has focused on the mineralocorticoid receptor (MR) and its impact on the myocardium and the performance of the heart. However, there is a lack of evidence about MR expression and its endogenous ligand aldosterone synthesis with specific regard to the intrinsic cardiac nervous system. Therefore, we looked for evidence of MR and aldosterone in sympathetic and parasympathetic neurons of intracardiac ganglia. Tissue samples from rat heart atria were subjected to conventional reverse-transcriptase polymerase chain reaction (PCR), Western blot, and double immunofluorescence confocal analysis of MR, corticosterone-inactivating enzyme 11β-hydroxysteroid-dehydrogenase-2 (11β-HSD2), aldosterone, and its processing enzyme CYP11B2 together with the neuronal markers vesicular acetylcholine transporter (VAChT) and tyrosine hydroxylase (TH). Our results demonstrated MR, 11β-HSD2, and CYP11B2 specific mRNA and protein bands in rat heart atria. Double immunofluorescence labeling revealed coexpression of MR immunoreactivity with VAChT in large diameter parasympathetic principal neurons. In addition, MR immunoreactivity was identified in TH-immunoreactive small intensely fluorescent (SIF) cells and in nearby VAChT- and TH-immunoreactive nerve terminals. Interestingly, the aldosterone and its synthesizing enzyme CYP11B2 and 11β-HSD2 colocalized in MR– immunoreactive neurons of intracardiac ganglia. Overall, this study provides first evidence for the existence of not only local expression of MR, but also of 11β-HSD2 and aldosterone with its processing enzyme CYP11B2 in the neurons of the cardiac autonomic nervous system, suggesting a possible modulatory role of the mineralocorticoid system on the endogenous neuronal activity on heart performance.


2022 ◽  
Vol 23 (1) ◽  
pp. 537
Author(s):  
Zulzikry Hafiz Abu Bakar ◽  
Jean-Pierre Bellier ◽  
Daijiro Yanagisawa ◽  
Tomoko Kato ◽  
Ken-ichi Mukaisho ◽  
...  

Mitochondrial ferritin (FtMt) is a mitochondrial iron storage protein associated with neurodegenerative diseases. In patients with progressive supranuclear palsy (PSP), FtMt was shown to accumulate in nigral neurons. Here, we investigated FtMt and LC3 in the post-mortem midbrain of PSP patients to reveal novel aspects of the pathology. Immunohistochemistry was used to assess the distribution and abnormal changes in FtMt and LC3 immunoreactivities. Colocalization analysis using double immunofluorescence was performed, and subcellular patterns were examined using 3D imaging and modeling. In the substantia nigra pars compacta (SNc), strong FtMt-IR and LC3-IR were observed in the neurons of PSP patients. In other midbrain regions, such as the superior colliculus, the FtMt-IR and LC3-IR remained unchanged. In the SNc, nigral neurons were categorized into four patterns based on subcellular LC3/FtMt immunofluorescence intensities, degree of colocalization, and subcellular overlapping. This categorization suggested that concomitant accumulation of LC3/FtMt is related to mitophagy processes. Using the LC3-IR to stage neuronal damage, we retraced LC3/FtMt patterns and revealed the progression of FtMt accumulation in nigral neurons. Informed by these findings, we proposed a hypothesis to explain the function of FtMt during PSP progression.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1037
Author(s):  
Violeta Soljic ◽  
Maja Barbaric ◽  
Martina Vukoja ◽  
Marina Curlin ◽  
Martina Orlovic Vlaho ◽  
...  

In our study, we aimed to establish expression of cytotoxic CD8+ T cells in the decidua basalis and the maternal peripheral blood (mPBL) of severe and mild preeclampsia (PE) and compare to healthy pregnancies. Decidual tissue and mPBL of 10 women with mild PE, 10 women with severe PE, and 20 age-matched healthy pregnancy controls were analyzed by double immunofluorescence and qPCR, respectively. By double immunofluorescence staining, we found a decreased total number of cells/mm2 in decidua basalis of granulysin (GNLY)+ (p ˂ 0.0001), granzyme B (GzB)+(p ˂ 0.0001), GzB+CD8+(p ˂ 0.0001), perforin (PRF1)+ (p ˂ 0.0001), and PRF1+CD8+ (p ˂ 0.01) in the severe PE compared to control group. Additionally, we noticed the trend of lower mRNA expression for GNLY, granzyme A (GZMA), GzB, and PRF1 in CD8+ T cells of mPBL in mild and severe PE, with the latter marker statistically decreased in severe PE (p ˂ 0.001). Forkhead box P3 (FOXP3) mRNA in CD8+ T cells mPBL was increased in mild PE (p ˂ 0.001) compared to controls. In conclusion, severe PE is characterized by altered expression of cytotoxic CD8+ T cells in decidua and mPBL, suggesting their role in pathophysiology of PE and fetal-maternal immune tolerance.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shiba Niu ◽  
Weibo Shi ◽  
Yingmin Li ◽  
Shanyong Yi ◽  
Yang Li ◽  
...  

An increasing number of people are in a state of stress due to social and psychological pressures, which may result in mental disorders. Previous studies indicated that mesencephalic dopaminergic neurons are associated with not only reward-related behaviors but also with stress-induced mental disorders. To explore the effect of stress on dopaminergic neuron and potential mechanism, we established stressed rat models of different time durations and observed pathological changes in dopaminergic neurons of the ventral tegmental area (VTA) through HE and thionine staining. Immunohistochemistry coupled with microscopy-based multicolor tissue cytometry (MMTC) was employed to investigate the number changes of dopaminergic neurons. Double immunofluorescence labelling was used to investigate expression changes of endoplasmic reticulum stress (ERS) protein GRP78 and CHOP in dopaminergic neurons. Our results showed that prolonged stress led to pathological alteration in dopaminergic neurons of VTA, such as missing of Nissl bodies and pyknosis in dopaminergic neurons. Immunohistochemistry with MMTC indicated that chronic stress exposure resulted in a significant decrease in dopaminergic neurons. Double immunofluorescence labelling showed that the endoplasmic reticulum stress protein took part in the injury of dopaminergic neurons. Taken together, these results indicated the involvement of ERS in mesencephalic dopaminergic neuron injury induced by stress exposure.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Bartosz Miciński ◽  
Barbara Jana ◽  
Jarosław Całka

Abstract Background The focus of the study was to examine the impact of the inflamed uterus on the population of the paracervical ganglion (PCG) uterus-innervating perikarya and their chemical coding. Fast Blue retrograde tracer was injected into the wall of uterine horns on the 17th day of the first studied estrous cycle. After 28 days, either Escherichia coli suspension or saline was applied to the horns of the uterus, whereas the control group received laparotomy only. Eight days after the above-mentioned procedures, uterine cervices with PCG were collected. Both macroscopic and histopathologic examinations confirmed severe acute endometritis in the Escherichia coli-injected uteri. The double immunofluorescence method was used to analyze changes in the PCG populations coded with dopamine-β‐hydroxylase (DβH) and/or neuropeptide Y (NPY), somatostatin (SOM), vasoactive intestinal polypeptide (VIP) and neuronal isoform of nitric oxide synthase (nNOS). Results The use of Escherichia coli lowered the total number of Fast Blue-positive neurons. Moreover, an increase in DβH+/VIP+, DβH+/NPY+, DβH+/SOM + and DβH+/nNOS + expressing perikarya was noted. A rise in non-noradrenergic VIP-, SOM- and nNOS-immunopositive populations was also recorded, as well as a drop in DβH-positive neurotransmitter-negative neurons. Conclusions To sum up, inflammation of the uterus has an impact on the neurochemical properties of the uterine perikarya in PCG, possibly affecting the functions of the organ.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chengyuan Cai ◽  
Danning Zeng ◽  
Qing Gao ◽  
Lei Ma ◽  
Bohang Zeng ◽  
...  

AbstractIron release from macrophages is closely regulated by the interaction of hepcidin, a peptide hormone produced by hepatocytes, with the macrophage iron exporter ferroportin (FPN1). However, the functions of FPN1 in hepatocyte secretion and macrophage polarization remain unknown. CD68 immunohistochemical staining and double immunofluorescence staining for F4/80 and Ki67 in transgenic mouse livers showed that the number of macrophages in FPN1−/+ and FPN1−/− mouse livers was significantly increased compared to that in WT (FPN+/+) mice. FPN1 downregulation in hepatic cells increased the levels of the M2 markers CD206, TGF- β, VEGF, MMP-9, Laminin, Collagen, IL-4 and IL-10. Furthermore, the expression of CD16/32 and iNOS, as M1 markers, exhibited the opposite trend. Meanwhile, α-SMA immunohistochemistry and Sirius red staining showed that the trend of liver fibrosis in FPN1−/− mice was more significant than that in control mice. Similarly, in vitro FPN1 knockdown in L02-Sh/L02-SCR liver cell lines yielded similar results. Taken together, we demonstrated that downregulated FPN1 expression in hepatocytes can promote the proliferation and polarization of macrophages, leading to hepatic fibrosis. Above all, the FPN1 axis might provide a potential target for hepatic fibrosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Makowska ◽  
Piotr Lech ◽  
Mariusz Majewski ◽  
Andrzej Rychlik ◽  
Slawomir Gonkowski

AbstractBisphenol A (BPA) is used in the production of plastics approved for contact with feed and food. Upon entering living organisms, BPA, as a potent endocrine disruptor, negatively affects various internal organs and regulatory systems, especially in young individuals. Although previous studies have described the neurotoxic effects of BPA on various tissues, it should be underlined that the putative influence of this substance on the chemical architecture of the urinary bladder intrinsic innervation has not yet been studied. One of the most important neuronal substances involved in the regulation of urinary bladder functions is vasoactive intestinal polypeptide (VIP), which primarily participates in the regulation of muscular activity and blood flow. Therefore, this study aimed to determine the influence of various doses of BPA on the distribution pattern of VIP-positive neural structures located in the wall of the porcine urinary bladder trigone using the double-immunofluorescence method. The obtained results show that BPA influence leads to an increase in the number of both neurons and nerve fibres containing VIP in the porcine urinary bladder trigone. This may indicate that VIP participates in adaptive processes of the urinary bladder evoked by BPA.


2021 ◽  
Vol 38 (6) ◽  
Author(s):  
Xinjie Dong ◽  
Yilei Li ◽  
Wei Li ◽  
Wenzhe Kang ◽  
Rong Tang ◽  
...  

AbstractEctopic ATP5B, which is located in a unique type of lipid raft caveolar structure, can be upregulated by cholesterol loading. As the structural component of caveolae, Cav-1 is a molecular hub that is involved in transmembrane signaling. In a previous study, the ATP5B-specific binding peptide B04 was shown to inhibit the migration and invasion of prostate cancer cells, and the expression of ATP5B on the plasma membrane of MDA-MB-231 cells was confirmed. The present study investigated the effect of ectopic ATP5B on the migration and invasion of MDA-MB-231 cells and examined the involvement of Cav-1. Cholesterol loading increased the level of ectopic ATP5B and promoted cell migration and invasion. These effects were blocked by B04. Ectopic ATP5B was physically colocalized with Cav-1, as demonstrated by double immunofluorescence staining and coimmunoprecipitation. After Cav-1 knockdown, the migration and invasion abilities of MDA-MB-231 cells were significantly decreased, suggesting that Cav-1 influences the function of ectopic ATP5B. Furthermore, these effects were not reversed after treatment with cholesterol. We concluded that Cav-1 may participate in MDA-MB-231 cell migration and invasion induced by binding to ectopic ATP5B.


2021 ◽  
Author(s):  
Chengyuan Cai ◽  
Danning Zeng ◽  
Qing Gao ◽  
Lei Ma ◽  
Bohang Zeng ◽  
...  

Abstract Iron release from macrophages is closely regulated by the interaction of hepcidin, a peptide hormone produced by hepatocytes, with the macrophage iron exporter ferroportin (FPN1). However, the functions of FPN1 in hepatocyte secretion and macrophage polarization remain unknown. CD68 immunohistochemical staining and double immunofluorescence staining for F4/80 and Ki67 in transgenic mouse livers showed that the number of macrophages in FPN1−/+ and FPN1−/− mouse livers was significantly increased compared to that in WT (FPN+/+) mice. FPN1 downregulation in hepatic cells increased the levels of the M2 markers CD206, TGF- β, VEGF, MMP-9, Laminin, Collagen, IL-4 and IL-10. Furthermore, the expression of CD16/32 and iNOS, as M1 markers, exhibited the opposite trend. Meanwhile, α-SMA immunohistochemistry and Sirius red staining showed that the trend of liver fibrosis in FPN1−/− mice was more significant than that in control mice. Similarly, in vitro FPN1 knockdown in L02-Sh/L02-SCR liver cell lines yielded similar results. Taken together, we demonstrated that downregulated FPN1 expression in hepatocytes can promote the proliferation and polarization of macrophages, leading to hepatic fibrosis. Above all, the FPN1 axis might provide a potential target for hepatic fibrosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takanobu Kabasawa ◽  
Rintaro Ohe ◽  
Naing Ye Aung ◽  
Yuka Urano ◽  
Takumi Kitaoka ◽  
...  

AbstractThe aim of this study was to examine whether lymphatic invasion in papillary thyroid carcinoma (PTC) occurs when tumour-associated macrophages (TAMs) injure lymphatic vessels together with cancer cells. While there was no difference in the lymphatic vessel density in PTC and follicular thyroid carcinoma (FTC), the number of TAMs around the lymphatic vessels was increased in PTC compared to that in FTC. In particular, TAMs were observed together with cancer cells in lymphatic invasive lesions, and the number of M2 cells inside and outside the lymphatic vessels showed a significant correlation. MMP-2 mRNA was expressed in nonneoplastic stromal cells as well as cancer cells, and double immunofluorescence staining confirmed M2 positivity. Consequently, this study reveals that M2 TAMs around lymphatic vessels within the tumour border of PTC may be associated with the lymphatic invasion of cancer cells. This study represents a step forward in elucidating the mechanism of lymphatic invasion.


Sign in / Sign up

Export Citation Format

Share Document