houston ship channel
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Zunwei Chen ◽  
Suji Jang ◽  
James M. Kaihatu ◽  
Yi-Hui Zhou ◽  
Fred A. Wright ◽  
...  

Natural and anthropogenic disasters may be associated with redistribution of chemical contaminants in the environment; however, current methods for assessing hazards and risks of complex mixtures are not suitable for disaster response. This study investigated the suitability of in vitro toxicity testing methods as a rapid means of identifying areas of potential human health concern. We used sediment samples (n = 46) from Galveston Bay and the Houston Ship Channel (GB/HSC) areas after hurricane Harvey, a disaster event that led to broad redistribution of chemically-contaminated sediments, including deposition of the sediment on shore due to flooding. Samples were extracted with cyclohexane and dimethyl sulfoxide and screened in a compendium of human primary or induced pluripotent stem cell (iPSC)-derived cell lines from different tissues (hepatocytes, neuronal, cardiomyocytes, and endothelial) to test for concentration-dependent effects on various functional and cytotoxicity phenotypes (n = 34). Bioactivity data were used to map areas of potential concern and the results compared to the data on concentrations of polycyclic aromatic hydrocarbons (PAHs) in the same samples. We found that setting remediation goals based on reducing bioactivity is protective of both “known” risks associated with PAHs and “unknown” risks associated with bioactivity, but the converse was not true for remediation based on PAH risks alone. Overall, we found that in vitro bioactivity can be used as a comprehensive indicator of potential hazards and is an example of a new approach method (NAM) to inform risk management decisions on site cleanup.


2021 ◽  
Author(s):  
S. Martin ◽  
Larry Daggett ◽  
Morgan Johnston ◽  
Chris Hewlett ◽  
Kiara Pazan ◽  
...  

In 2020, the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory, provided technical oversight during a navigation study to assist the Galveston District evaluation of different channel widening alternatives for larger ships transiting the Houston Ship Channel (HSC), Texas. The widening proposals encompassed several areas of the HSC including the Bay Section, the Bayport Ship Channel, Barbours Cut Channel, and the Bayou Section. The study was performed at the San Jacinto College Maritime Technology and Training Center (SJCMTTC) Ship/Tug Simulator (STS) Facility in La Porte, TX. The SJCMTTC STS is a real-time simulator; therefore, events on the simulator happen at the same time rate as real life. A variety of environmental forces act upon the ship during the simulation transit. These include currents, wind, waves, bathymetry, and ship-to-ship interaction. Online simulations of the project were conducted at SJCMTTC over a 3-week period – May through June 2020. Several mariners including Houston Pilots and G&H tugboat Captains participated in the testing and validation exercises. ERDC oversight was performed remotely because of the COVID-19 pandemic. Results in the form of engineering observations, track plots, and pilot interviews were reviewed to develop final conclusions and recommendations regarding the final design.


2021 ◽  
Author(s):  
Jennifer McAlpin ◽  
Cassandra Ross

The Houston Ship Channel (HSC) is one of the busiest deep-draft navigation channels in the United States and must be able to accommodate increasing vessel sizes. The US Army Engineer District, Galveston (SWG), requested the Engineer Research and Development Center, Coastal and Hydraulics Laboratory, perform hydrodynamic and sediment modeling of proposed modifications in Galveston and Trinity Bays and along the HSC. The modeling results are necessary to provide data for hydrodynamic, salinity, and sediment transport analysis. SWG provided three project alternatives that include closing Rollover Pass, Bay Aquatic Beneficial Use System cells, Bird Islands, and HSC modifications. These alternatives and a Base (existing condition) will be simulated for present (2029) and future (2079) conditions. The results of these alternatives/conditions as compared to the Base are presented in this report. The model shows that the mean salinity varies by 2–3 ppt due to the HSC channel modifications and by approximately 5 ppt in the area of East Bay due to the closure of Rollover Pass. The tidal prism increases by 2.5% to 5% in the alternatives. The tidal amplitudes change by less than 0.01 m. The residual velocity vectors vary in and around areas where project modifications are made.


2021 ◽  
Author(s):  
Bavand Sadeghi ◽  
Arman Pouyaei ◽  
Yunsoo Choi ◽  
Bernhard Rappenglueck

Abstract. The seasonal variations of volatile organic compounds (VOCs) was studied in the Houston metropolitan area in the summertime and wintertime of 2018. The analysis of hourly measurements obtained from the automated gas chromatograph (auto-GC) network showed the total VOC average concentrations of 28.68 ppbC in the summertime and 33.92 ppbC in the wintertime. The largest contributions came from alkane compounds, which accounted for 61 % and 82 % of VOCs in the summer and winter, respectively. We performed principal component analysis (PCA) and Positive Matrix Factorization (PMF) and identified seven factors in the summertime and six factors in the wintertime, among which alkane species formed three factors according to their rate of reactions in both seasons: (1) the emissions of long-lived tracers from oil and natural gas (ONG long-lived species), (2) fuel evaporation, and (3) the emissions of short-lived tracers from oil and natural gas (ONG short-lived species). Two other similar factors were (4) emissions of aromatic compounds and (5) alkene tracers of ethylene and propylene. Summertime factor 6 was associated with acetylene, and one extra summertime factor 7 was influenced by the biogenic emissions. The factor 6 of wintertime was affected by vehicle exhaust. Higher nighttime and lower daytime values of the ethylene/acetylene ratios during the summertime indicated the stronger impacts of ethylene photochemical degradation. Also, the exploration of the photochemical processes of the VOCs showed that the ethylene and propylene had the highest contributions to the summertime and wintertime ozone formation as well as the emissions of the isoprene, which showed a high impact on summertime ozone. Our results acknowledged that ethylene and propylene continue to be significant emissions of VOCs, and their emissions control would help the mitigation of the ozone of Ship Channel. Based on trajectory analysis, we identified main VOC emission sources in Houston Ship Channel (HSC) local industrial areas and regions south of the HSC. Ambient VOC concentrations measured at the HSC were influenced by the emissions from the petrochemical sectors and industrial complexes, especially from the Baytown refinery and Bayport industrial district next to the HSC and Galveston Bay refineries at the south of the study area.


2021 ◽  
Author(s):  
Matt Malej ◽  
Fengyan Shi

This Coastal and Hydraulics Engineering Technical Note (CHETN) documents the development through verification and validation of three instability-suppressing mechanisms in FUNWAVE-TVD, a Boussinesq-type numerical wave model, when modeling deep-draft vessels with a low under-keel clearance (UKC). Many large commercial ports and channels (e.g., Houston Ship Channel, Galveston, US Army Corps of Engineers [USACE]) are traveled and affected by tens of thousands of commercial vessel passages per year. In a series of recent projects undertaken for the Galveston District (USACE), it was discovered that when deep-draft vessels are modeled using pressure-source mechanisms, they can suffer from model instabilities when low UKC is employed (e.g., vessel draft of 12 m¹ in a channel of 15 m or less of depth), rendering a simulation unstable and obsolete. As an increasingly large number of deep-draft vessels are put into service, this problem is becoming more severe. This presents an operational challenge when modeling large container-type vessels in busy shipping channels, as these often will come as close as 1 m to the bottom of the channel, or even touch the bottom. This behavior would subsequently exhibit a numerical discontinuity in a given model and could severely limit the sample size of modeled vessels. This CHETN outlines a robust approach to suppressing such instability without compromising the integrity of the far-field vessel wave/wake solution. The three methods developed in this study aim to suppress high-frequency spikes generated nearfield of a vessel. They are a shock-capturing method, a friction method, and a viscosity method, respectively. The tests show that the combined shock-capturing and friction method is the most effective method to suppress the local high-frequency noises, while not affecting the far-field solution. A strong test, in which the target draft is larger than the channel depth, shows that there are no high-frequency noises generated in the case of ship squat as long as the shock-capturing method is used.


2021 ◽  
Author(s):  
Jennifer N. McAlpin ◽  
Cassandra G. Ross

The Houston Ship Channel is one of the busiest deep -draft navigation channels in the United States and must be able to accommodate larger vessel dimensions over time. The U.S. Army Engineer District, Galveston (SWG) requested the U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory perform hydrodynamic and sediment modeling of proposed modifications along the Houston Ship Channel. The modeling results are necessary to provide data for salinity and sediment transport analysis a s well as ship simulation studies. SWG provided a project alternative that includes channel widening, deepening, and bend easing. After initial analysis, two additional channel widths in the bay portion of the Houston Ship Channel were requested for testing. The results of these additional channel widths are presented in this report. The model shows that the salinity does not vary significantly due to the channel modifications being considered for this project. Changes in salinity are 2 parts per thousand or less. The tidal prism increases by less than 2% when the project is included, and the tidal amplitudes increase by no more than 0.01 meter. The residual velocity vectors do vary in and around areas where project modifications are made.


Sign in / Sign up

Export Citation Format

Share Document