functional material
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 178)

H-INDEX

33
(FIVE YEARS 9)

2022 ◽  
Vol 120 (2) ◽  
pp. 023905
Author(s):  
Yue Gong ◽  
Jinchang Sun ◽  
Weiwei Hu ◽  
Songlin Li ◽  
Weibin Xu ◽  
...  
Keyword(s):  

Author(s):  
Qiaomu Wang ◽  
Dongni Wang ◽  
Qiaobo Liao ◽  
Can Ke ◽  
Yiying Zhang ◽  
...  

2021 ◽  
Vol 12 (6) ◽  
pp. 8195-8204

On 4 December in 2002, the mainstream source of exposure to Polycyclic Aromatic Hydrocarbons (PAHs) was defined by the Scientific Committee as food and inhaled air. Several Polycyclic Aromatic Hydrocarbons (PAHs) such as benzo[a]pyrene, chrysene, and dibenzo(a,h)anthracene in food caused the risk of human health. These are produced by the cooking processes, including combustion processes and pyrolysis sources. Certain food preparation methods like grilling, roasting, and smoking are accumulated PAHs in the sink pipes. As PAHs are toxic and carcinogenic, it raises health and environmental problems. What is the method for preventing PAHs exist in wastewater? This review article introduces a functional material, gelatin physical gels, to trap and remove the PAHs. The physical gel changes from colorless to pale yellow during the adsorption of PAHs in household wastewater. The concentration of PAHs is determined by GC-MS analysis, which decreases the potential risk of human exposure in an environment with PAHs.


2021 ◽  
Vol 22 ◽  
pp. 100856
Author(s):  
Huijie Wei ◽  
Shujing Zhao ◽  
Xiaoyuan Zhang ◽  
Bianying Wen ◽  
Zhiqiang Su

2021 ◽  
Vol 2086 (1) ◽  
pp. 012010
Author(s):  
N A Demidenko ◽  
A V Kuksin ◽  
E S Davydova ◽  
V A Zaborova ◽  
L P Ichkitidze ◽  
...  

Abstract Nowadays there is a great need for the development of flexible strain sensors that can register human body’s movements. In the field of wearable and smart electronics such sensors are actively being developed. Resistive-type flexible sensors are the easiest to manufacture. Their mechanism of sensitivity to deformations is based on a change in electrical resistance during deformations. In this work, we have developed the functional material for strain sensor with high tensile properties, strength and electrical conductivity. This material based on a matrix of silicone elastomer and a multi-walled carbon nanotubes (MCNTs) filler. The material showed a high elongation of 950 % with a tensile strength of 1.437 MPa. The manufacturing process included laser structuring of MCNTs to form an electrically conductive network. The linear gauge factor was 3.4, and the angular gauge factor was 0.26.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kyung Hwa Hong

AbstractTo seek a more environmentally friendly textile finishing technique, the screen-printing method was adopted to apply functional material to cotton fabrics. In addition, gallotannin was used as a functional material because it is naturally abundant in many plant-derived substances and shows various health-promoting features such as antimicrobial, antioxidant, and other attractive properties. Therefore, a gallotannin/thickener paste was applied to the surface of cotton fabrics through the screen-printing technique, and the gallotannin-printed cotton fabrics were thoroughly investigated using scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and other methods. The gallotannin printed area was substantially brown in appearance, and gallotannin moiety appeared to combine with cotton cellulose through heat treatment. Furthermore, functional properties of the gallotannin-printed cotton fabrics were examined in terms of antibacterial activity, deodorizing property, and ultraviolet-blocking property, of which it demonstrated excellent abilities. However, the antibacterial ability toward Gram-negative bacteria (K. pneumoniae) decreased as the laundry cycle increased.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 678
Author(s):  
Kalu K. Asanka Sanjeewa ◽  
Kalahe H. I. N. M. Herath ◽  
Hye-Won Yang ◽  
Cheol Soo Choi ◽  
You-Jin Jeon

Fucoidans are sulfated heteropolysaccharides found in the cell walls of brown seaweeds (Phaeophyceae) and in some marine invertebrates. Generally, fucoidans are composed of significant amounts of L-fucose and sulfate groups, and lesser amounts of arabinose, galactose, glucose, glucuronic acid, mannose, rhamnose, and xylose. In recent years, fucoidans isolated from brown seaweeds have gained considerable attention owing to their promising bioactive properties such as antioxidant, immunomodulatory, anti-inflammatory, antiobesity, antidiabetic, and anticancer properties. Inflammation is a complex immune response that protects the organs from infection and tissue injury. While controlled inflammatory responses are beneficial to the host, leading to the removal of immunostimulants from the host tissues and restoration of structural and physiological functions in the host tissues, chronic inflammatory responses are often associated with the pathogenesis of tumor development, arthritis, cardiovascular diseases, diabetes, obesity, and neurodegenerative diseases. In this review, the authors mainly discuss the studies since 2016 that have reported anti-inflammatory properties of fucoidans isolated from various brown seaweeds, and their potential as a novel functional material for the treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document