d2d communications
Recently Published Documents


TOTAL DOCUMENTS

821
(FIVE YEARS 287)

H-INDEX

39
(FIVE YEARS 10)

2022 ◽  
pp. 1-11
Author(s):  
Mai Le ◽  
Quoc-Viet Pham ◽  
Hee-Cheol Kim ◽  
Won-Joo Hwang

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 258
Author(s):  
Chongdeuk Lee

To provide high-quality streaming services in device-to-device (D2D) communications, performance parameters such as encoding rate, decoding rate, and flow rate should be detected and monitored. The proposed algorithm provides a method to detect time streaming for traffic flows in D2D communications, and a sequence to detect rate imbalance. This paper proposes a new FS-CDA (flow sensing-based congestion detecting algorithm) to prevent high congestion rates and assist an optimized D2D streaming service in 5G-based wireless mobile networks. The proposed algorithm detects and controls flow imbalance for streaming segments during D2D communications, and it includes operations such as transmission rate monitoring, rate adjustment functions, and underflow and overflow sensing for these operations. The paper aims to effectively control traffic flow rates caused by adjacent channel bandwidth, high bit rate error, and heterogeneous radio interference, and to enhance the performance of D2D streaming services by performing such operations. The proposed algorithm for D2D streaming services is measured by deriving the individual weight of certain versions of a streaming flow. Based on the given operations, the simulation results indicated that the proposed algorithm has better performance with respect to average congestion control ratio, PSNR, and average throughput than other methods.


2021 ◽  
Author(s):  
Zahra Nazarichaleshtori ◽  
Stanislav Zvanovec ◽  
Zabih Ghassemlooy ◽  
Mohammad Khalighi
Keyword(s):  

2021 ◽  
Author(s):  
Sutanu Ghosh ◽  
Tamaghna Acharya ◽  
Santi P. Maity

<pre>This paper reports relative performance of decode-and-forward (DF) and amplify-and-forward (AF) relaying in a multi-antenna cooperative cognitive radio network (CCRN) that supports device-to-device (D2D) communications using spectrum sharing technique in cellular network. In this work, cellular system is considered as primary and internet of things devices (IoDs), engaged in D2D communications, are considered to be secondary system. The devices access the licensed spectrum by means of the cooperation in two-way primary communications. Furthermore, IoDs are energized by harvesting the energy from radio frequency (RF) signals, using simultaneous wireless information and power transfer (SWIPT) protocol. Closed form expressions of outage probability for both cellular and D2D communications are derived and the impact of various design parameters for both AF and DF relaying techniques are studied. Based on the simulation results, it is found that the proposed spectrum sharing protocol, for both DF relaying and AF relaying schemes, outperform another similar network architecture in terms of spectrum efficiency. It is also observed that the performance of the proposed system using DF relaying is better than AF relaying scheme in terms of energy efficiency at same transmit power<br></pre>


Sign in / Sign up

Export Citation Format

Share Document