liquid hydrocarbons
Recently Published Documents


TOTAL DOCUMENTS

843
(FIVE YEARS 136)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Vol 8 (1) ◽  
pp. 17-24
Author(s):  
R. Brovko ◽  
L. Mushinskii ◽  
V. Doluda

The methanol into hydrocarbons transformation is a complex catalytic reaction accompanied by the formation of a wide range of hydrocarbons and proceeding on the surface of acid sites of various zeolites. Zeolite H-ZSM-5 considered to be most often used catalyst for this process. H-ZSM-5 is a highly dispersed material with a crystal diameter of 1–20 microns, which complicates its direct use in reactors with a fixed catalyst bed due to the high hydraulic pressure drop of the catalytic bed. Traditionally in industry, this issue is solved by using complex reactor systems with a fluidized bed, which is justified for large-scale production. In small and medium-size plants, the use of fluidized bed systems is not economically feasible. One of the possible solutions to this problem is the use of a monolithic catalyst with a supported layer of H-ZSM-5 zeolite. This article presents a study of the catalytic activity of a zeolite-containing microstructured monolith in methanol into hydrocarbons transformation. The monolith was synthesized by pressing a zeolite-containing mass followed by drying, calcining, and secondary growth of the zeolite on the monolith surface. A sample of a monolith with an average channel diameter of 0.5, 1.0, 1.5, 2.0 mm were synthesized this way. Samples of the microstructured catalyst were tested at varying temperatures from 250 to 450 °C and at varying the specific methanol feed rate from 0.65 to 2.3 kg (MeOH)/(kg (Cat) h). For this purpose, the monolithic catalyst was placed in a reactor for testing microstructured catalysts, which consisted of a pump, a temperature controller, a catalytic reactor, a condenser, a separating funnel, and a chromatograph. Varying the conditions showed that for the preferential production of gaseous C1–C4 hydrocarbons, it is advisable to carry out the reaction under the following conditions: the average diameter of the catalyst channels is 2 mm, the reaction temperature is 350 °C, the methanol feed rate is 1.65 kg (MeOH)/(kg (Cat) h). For the predominant formation of liquid hydrocarbons of the C5–C8 fraction, it is advisable to carry out the transformation of methanol into hydrocarbons under the following conditions: the average diameter of the catalyst channels is 1 mm, the reaction temperature is 350 °C, the methanol feed rate is 0.65 kg (MeOH) / (kg (Cat) h). For the predominant formation of liquid hydrocarbons of the C9–C12 fraction, it is advisable to carry out the transformation of methanol into hydrocarbons under the following conditions: the average diameter of the catalyst channels is 0.5 mm, the reaction temperature is 350 °C, and the methanol feed rate is 0.65 kg (MeOH) / (kg (Cat) h).


2022 ◽  
Vol 43 (2) ◽  
Author(s):  
Larisa S. Karpushenkava ◽  
Gennady J. Kabo ◽  
Lubov A. Kabo ◽  
Nastassia F. Kazlouskaya ◽  
Andrey V. Blokhin

2021 ◽  
Vol 15 (2) ◽  
pp. 58-63
Author(s):  
Balázs Hegedüs ◽  
Zsolt Dobó

Recycling of plastic waste is desirable to lower environmental pollution and fulfil the requirements of circular economy. Energetic utilization is another possibility, however, municipal solid waste containing plastics is usually combusted to generate heat and electricity. An attractive way of dealing with plastic waste is pyrolysis, which has the potential of producing liquid hydrocarbons suitable as a transportation fuel. The pyrolysis results of three plastics produced in the largest amount globally, namely polyethylene, polypropylene and polystyrene as well as their mixtures are presented. The experiments were performed in a laboratory scale batch reactor. The pyrolysis oils were further processed by distillation to provide gasoline and diesel like (distillation cuts at 210 and 350 °C) hydrocarbons. The gasoline fractions were analysed by GC-MS and the composition was compared with the EU gasoline standard. It was found that the oils from PE, PP and PS contain compounds present in standard gasoline. Mixing PS with PE and PP before the pyrolysis, or the oils afterward produces much closer results to standard requirements as PS pyrolysis generates mostly aromatic content. As standard maximizes the olefin content of gasoline to 18 Vol%, hydrogenation was also performed using Pd based catalyst. The hydrogenation process significantly reduced the number of double bonds resulting in low olefin content. Results show that the pyrolysis of plastic waste mixtures containing PE, PP and PS is a viable method to produce pyrolysis oil suitable for gasoline-like fuel extraction and further hydrogenation of the product can provide gasoline fuels with low olefin content.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012040
Author(s):  
E P Kopyev ◽  
I S Anufriev ◽  
M A Mukhina ◽  
I S Sadkin

Abstract In the present work, the effect of forced air supply on the combustion process of liquid hydrocarbons was studied using diesel fuel as an example. The content of the flame intermediate components and temperature distribution along the flame symmetry axis were studied using an atmospheric burner in which liquid fuel is atomized by a steam jet. The gas composition of equilibrium combustion products and heat release were also investigated. The influence of the excess air ratio in the combustion chamber of the burner device on the thermal and environmental characteristics was shown.


Author(s):  
Aleksandr D. Korobov ◽  
◽  
Lydmila A. Korobova ◽  

The paper is meant to prove that structural reconstruction of riftogenic basins is accompanied by the intensification of tectonichydrothermal activity. It controls the mobility of gaseous-liquid hydrocarbons during their primary and lateral migration in the process of deposit formation. The intensity index of tectonic-hydrothermal activation is equal to the ratio of maximum paleotemperatures of gaseous-liquid inclusions to the paleotemperatures calculated from vitrinite reflectance values. This parameter determined in the same intervals of a geologic section reflects the level of paleothermal incongruity in the natural system. It can be used to make predictive estimates of the areas for hydrocarbon materials. The values of this parameter vary in the range of 1.5–2.5 in promising riftogenic areas with the source rocks in the temperature zone of 80–160°С due to conducive heating.


2021 ◽  
Author(s):  
Yuriy Anatolievich Neruchev ◽  
Vadim Igorevich Korotkovskii ◽  
Michail Feliksovich Bolotnikov

Abstract In this paper, it is shown that a physically correct description of the thermophysical properties of liquid hydrocarbons is possible only when non-covalent long-range bond forces are taken into account


Author(s):  
K. B. Larionov ◽  
K. V. Slyusarskiy ◽  
M. V. Kirgina ◽  
D. V. Gvozdyakov ◽  
I. A. Bogdanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document