heavy ion collision
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 37)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Charles Gale ◽  
Jean-François Paquet ◽  
Björn Schenke ◽  
Chun Shen

2022 ◽  
Vol 258 ◽  
pp. 05008
Author(s):  
Alexander Soloviev

The evolution of a heavy ion collision passes close to the O(4) critical point of QCD, where fluctuations of the order parameter are expected to be enhanced. Using the appropriate stochastic hydrodynamic equations in mean field near the the pseudo-critical point, we compute how these enhanced fluctuations modify the transport coefficients of QCD. Finally, we estimate the expected critical enhancement of soft pion yields, which provides a plausible explanation for the excess seen in experiment relative to ordinary hydrodynamic computations.


2021 ◽  
Vol 57 (12) ◽  
pp. 1205
Author(s):  
M. Ayaz Ahmad ◽  
Shafiq Ahmad

An attempt has been made to study the angular characteristics of heavy ion collision at high energy in the interactions of 28Si nuclei using with nuclear emulsion. The KNO scaling behavior in terms of the multiplicity distribution has been studied. A simplest universal function has been used to represent the present experimental data.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Varun Vaidya

Abstract I develop an Effective Field Theory (EFT) framework to compute jet substructure observables for heavy ion collision experiments. As an example, I consider dijet events that accompany the formation of a weakly coupled long lived Quark Gluon Plasma (QGP) medium in a heavy ion collision and look at an observable insensitive to jet selection bias: the simultaneous measurement of jet mass along with the transverse momentum imbalance between the jets that are groomed to remove soft radiation. Treating the jet as an open quantum system, I write down a factorization formula within the SCET (Soft Collinear Effective Theory) framework in the forward scattering regime. The physics of the medium is encoded in a universal soft field correlator while the jet-medium interaction is captured by a medium induced jet function. The factorization formula leads to a Lindblad type equation for the evolution of the reduced density matrix of the jet in the Markovian approximation. The solution for this equation allows a resummation of large logarithms that arise due to the final state measurements imposed while simultaneously summing over multiple incoherent interactions of the jet with the medium.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1777
Author(s):  
Hua Zheng ◽  
Aldo Bonasera

We analyzed recent experimental data on the disassembly of 28Si into 7α in terms of a hybrid α-cluster model. We calculated the probability of breaking into several α-like fragments for high l-spin values for identical and non-identical spin zero nuclei. Resonant energies were found for each l-value and compared to the data and other theoretical models. Toroidal-like structures were revealed in coordinate and momentum space when averaging over many events at high l. The transition from quantum to classical mechanics is highlighted.


2021 ◽  
pp. 2150152
Author(s):  
Abhisek Saha ◽  
Soma Sanyal

In this paper, we study temperature fluctuations in the initial stages of the relativistic heavy ion collision using a multiphase transport model. We consider the plasma in the initial stages after collision before it has a chance to equilibrate. We have considered [Formula: see text] collision with a center-of-mass energy of 200 GeV. We use the nonextensive Tsallis statistics to find the entropic index in the partonic stages of the relativistic heavy ion collisions. We find that the temperature and the entropic index have a linear relationship during the partonic stages of the heavy ion collision. This has already been observed in the hadronic phase. A detailed analysis of the dependence of the entropic index on the system shows that for increasing spacetime rapidity, the entropic index of the partonic system increases. The entropic index also depends on the beam collision energy. The calculation of the entropic index from the experimental data fitting of the transverse momenta deals with the hadronic phase. However, our study shows that the behavior of the entropic index in the initial nonequilibrium stage of the collision is very similar to the behavior of the entropic index in the hadronic stage.


2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Rohit Gupta ◽  
Aman Singh Katariya ◽  
Satyajit Jena

Particles ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 236-240
Author(s):  
Vadim Volkov ◽  
Marina Golubeva ◽  
Fedor Guber ◽  
Alexander Ivashkin ◽  
Nikolay Karpushkin ◽  
...  

Two approaches related to the centrality determination in heavy-ion Multi-Purpose Detector (MPD) experiments, using charge-particles multiplicity in Time Projection Chamber (TPC) and the energy deposition in Forward Hadron Calorimeter (FHCal) are discussed. The main features of the FHCal are the fine transverse segmentation and the beam holes in the center of the calorimeters. Leaking the heavy non-interacting fragments (spectators) leads to ambiguity in the dependence of energy deposition in the FHCal on the collision centrality. However, the calorimeter transverse segmentation allows one to measure the energy distributions in each of the FHCal modules and to construct combined observables to resolve the problems associated with the beam hole. The comparison of these approaches in the collision centrality measurements is discussed.


Sign in / Sign up

Export Citation Format

Share Document