hybrid assembly
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 97)

H-INDEX

21
(FIVE YEARS 5)

2021 ◽  
Vol 9 (12) ◽  
pp. 2560
Author(s):  
Abdolrahman Khezri ◽  
Ekaterina Avershina ◽  
Rafi Ahmad

Emerging new sequencing technologies have provided researchers with a unique opportunity to study factors related to microbial pathogenicity, such as antimicrobial resistance (AMR) genes and virulence factors. However, the use of whole-genome sequence (WGS) data requires good knowledge of the bioinformatics involved, as well as the necessary techniques. In this study, a total of nine Escherichia coli and Klebsiella pneumoniae isolates from Norwegian clinical samples were sequenced using both MinION and Illumina platforms. Three out of nine samples were sequenced directly from blood culture, and one sample was sequenced from a mixed-blood culture. For genome assembly, several long-read, (Canu, Flye, Unicycler, and Miniasm), short-read (ABySS, Unicycler and SPAdes) and hybrid assemblers (Unicycler, hybridSPAdes, and MaSurCa) were tested. Assembled genomes from the best-performing assemblers (according to quality checks using QUAST and BUSCO) were subjected to downstream analyses. Flye and Unicycler assemblers performed best for the assembly of long and short reads, respectively. For hybrid assembly, Unicycler was the top-performing assembler and produced more circularized and complete genome assemblies. Hybrid assembled genomes performed substantially better in downstream analyses to predict putative plasmids, AMR genes and β-lactamase gene variants, compared to MinION and Illumina assemblies. Thus, hybrid assembly has the potential to reveal factors related to microbial pathogenicity in clinical and mixed samples.


2021 ◽  
Vol 10 (46) ◽  
Author(s):  
Kentaro Miyazaki ◽  
Natsuko Tokito

Complete genome resequencing was conducted for Thermus thermophilus strain TMY by hybrid assembly of Oxford Nanopore Technologies long-read and MGI short-read data. Errors in the previously reported genome sequence determined by PacBio technology alone were corrected, allowing for high-quality comparative genomic analysis of closely related T. thermophilus genomes.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kerstin Neubert ◽  
Eric Zuchantke ◽  
Robert Maximilian Leidenfrost ◽  
Roebbe Wuenschiers ◽  
Josephine Grützke ◽  
...  

Abstract Background We benchmarked sequencing technology and assembly strategies for short-read, long-read, and hybrid assemblers in respect to correctness, contiguity, and completeness of assemblies in genomes of Francisella tularensis. Benchmarking allowed in-depth analyses of genomic structures of the Francisella pathogenicity islands and insertion sequences. Five major high-throughput sequencing technologies were applied, including next-generation “short-read” and third-generation “long-read” sequencing methods. Results We focused on short-read assemblers, hybrid assemblers, and analysis of the genomic structure with particular emphasis on insertion sequences and the Francisella pathogenicity island. The A5-miseq pipeline performed best for MiSeq data, Mira for Ion Torrent data, and ABySS for HiSeq data from eight short-read assembly methods. Two approaches were applied to benchmark long-read and hybrid assembly strategies: long-read-first assembly followed by correction with short reads (Canu/Pilon, Flye/Pilon) and short-read-first assembly along with scaffolding based on long reads (Unicyler, SPAdes). Hybrid assembly can resolve large repetitive regions best with a “long-read first” approach. Conclusions Genomic structures of the Francisella pathogenicity islands frequently showed misassembly. Insertion sequences (IS) could be used to perform an evolutionary conservation analysis. A phylogenetic structure of insertion sequences and the evolution within the clades elucidated the clade structure of the highly conservative F. tularensis.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S109-S109
Author(s):  
Nenad Macesic ◽  
Luke Blakeway ◽  
Adam W Jenney ◽  
Anton Peleg

Abstract Background Carbapenem-resistant Enterobacterales (CRE) have become endemic and cause significant morbidity and mortality globally. The metallo-beta-lactamase gene blaIMP-4 is a key CRE resistance determinant in Australia and Asia but its genomic context remains unknown. We aimed to determine the genomic epidemiology of blaIMP-4 in clinical and environmental isolates from 2008 – 2020 at our institution. Methods We performed whole genome sequencing on 219 blaIMP-4-carrying isolates from 134 patients (219 short-read and 75 long-read). Multi-locus sequence types (MLSTs), resistance determinants and plasmid replicons were assessed. High-quality de novo hybrid assemblies were used to identify location of blaIMP-4 gene. We conducted phylogenetic analysis for key MLSTs and plasmids. Results Bla IMP-4 was noted on a class I integron also harboring aminoglycoside, sulfamethoxazole, chloramphenicol and quaternary ammonium compound resistance genes. This integron was able to migrate over time to 10 bacterial species (42 STs) and 6 different plasmid types (Figure 1 and Figure 2). From 2008-2020, blaIMP-4 was present on IncC plasmids in Serratia marcescens and Klebsiella pneumoniae. We noted small outbreaks of Pseudomonas aeruginosa ST111 with chromosomal integration of blaIMP-4 from 2008-2018 (16 isolates) and Enterobacter cloacae complex ST114 with blaIMP-4 on IncFIB(K)/IncFIA(HI1) plasmids from 2011-2020 (19 isolates). From 2016-2020, there was an explosion of diverse IncHI2 plasmids carrying blaIMP-4. This was driven by clonal expansion of E. cloacae complex ST93/ST190 (79 isolates), with spillover of IncHI2 plasmids to Klebsiella spp (13 isolates), Citrobacter spp (2 isolates), S. marcescens (1 isolate), Escherichia coli (4 isolates). In addition to blaIMP-4, these plasmids carried mcr-9.1, a colistin resistance gene, and resistance determinants to nearly all key classes of Gram-negative antimicrobials. Figure 1. Bacterial species harboring blaIMP-4 2008-2020 BlaIMP-4 was noted in diverse bacterial species over the study period. Serratia marcescens and Klebsiella pneumoniae were present throughout. Outbreaks of Enterobacter cloacae complex ST114, ST190 and ST93 and Pseudomonas aeruginosa ST111 were noted. Figure 2. Diverse plasmids associated with blaIMP-4 carriage determined by de novo hybrid assembly Presence of blaIMP-4 on diverse plasmids that varied through the study period was noted. Plasmids were charaterised by analysing de novo hybrid assembly data and co-location of blaIMP-4 and plasmid replicons on the same contigs. Conclusion Bla IMP-4 spread on a class I integron was responsible for endemic carbapenem resistance at our institution. This mobile genetic element was able to persist due to both clonal spread and entry into diverse plasmids. Concerningly, we noted a large outbreak driven by IncHI2 plasmids harboring colistin resistance genes with spread to multiple bacterial species. Disclosures All Authors: No reported disclosures


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lei Liu ◽  
Yulin Wang ◽  
Yu Yang ◽  
Depeng Wang ◽  
Suk Hang Cheng ◽  
...  

Abstract Background Long-read sequencing has shown its tremendous potential to address genome assembly challenges, e.g., achieving the first telomere-to-telomere assembly of a gapless human chromosome. However, many issues remain unresolved when leveraging error-prone long reads to characterize high-complexity metagenomes, for instance, complete/high-quality genome reconstruction from highly complex systems. Results Here, we developed an iterative haplotype-resolved hierarchical clustering-based hybrid assembly (HCBHA) approach that capitalizes on a hybrid (error-prone long reads and high-accuracy short reads) sequencing strategy to reconstruct (near-) complete genomes from highly complex metagenomes. Using the HCBHA approach, we first phase short and long reads from the highly complex metagenomic dataset into different candidate bacterial haplotypes, then perform hybrid assembly of each bacterial genome individually. We reconstructed 557 metagenome-assembled genomes (MAGs) with an average N50 of 574 Kb from a deeply sequenced, highly complex activated sludge (AS) metagenome. These high-contiguity MAGs contained 14 closed genomes and 111 high-quality (HQ) MAGs including full-length rRNA operons, which accounted for 61.1% of the microbial community. Leveraging the near-complete genomes, we also profiled the metabolic potential of the AS microbiome and identified 2153 biosynthetic gene clusters (BGCs) encoded within the recovered AS MAGs. Conclusion Our results established the feasibility of an iterative haplotype-resolved HCBHA approach to reconstruct (near-) complete genomes from highly complex ecosystems, providing new insights into “complete metagenomics”. The retrieved high-contiguity MAGs illustrated that various biosynthetic gene clusters (BGCs) were harbored in the AS microbiome. The high diversity of BGCs highlights the potential to discover new natural products biosynthesized by the AS microbial community, aside from the traditional function (e.g., organic carbon and nitrogen removal) in wastewater treatment.


2021 ◽  
Vol 10 (41) ◽  
Author(s):  
W. E. Moore ◽  
G. K. K. Lai ◽  
S. D. J. Griffin ◽  
F. C. C. Leung

Kosakonia cowanii is a Gram-negative, motile, facultative anaerobic enterobacterium that is found in soil, water, and sewage. K. cowanii SMBL-WEM22 is a halotolerant strain that was isolated from seawater in Hong Kong. The complete genome of SMBL-WEM22 (5,037,617 bp, with a GC content of 55.02%) was determined by hybrid assembly of short- and long-read DNA sequences.


2021 ◽  
Vol 10 (39) ◽  
Author(s):  
Ana B. García-Martín ◽  
Sarah Schmitt ◽  
Friederike Zeeh ◽  
Vincent Perreten

The complete genomes of four Brachyspira hyodysenteriae isolates of the four different sequence types (STs) (ST6, ST66, ST196, and ST197) causing swine dysentery in Switzerland were generated by whole-genome sequencing and de novo hybrid assembly of reads obtained from second (Illumina) and third (Oxford Nanopore Technologies and Pacific Biosciences) high-throughput sequencing platforms.


2021 ◽  
Author(s):  
Hui-Su Kim ◽  
Changjae Kim ◽  
George McDonald Church ◽  
Jong Bhak

PGP1 is the first participant of Personal Genome Project. We present the PGP1′s chromosome-scale genome assembly. It was constructed using 255 Gb ultra-long PromethION reads and 97 Gb short paired-end reads. For reducing base calling errors, we corrected PromethION reads using 72 Gb PacBio HiFi reads. 327 Gb Hi-C chromosomal mapping data were utilized to maximize the assembly′s contiguity. PGP1′s contig assembly was 3.01 Gb in length comprising of 4,234 contigs with an N50 value of 33.8 Mb. After scaffolding with Hi-C data and extensive manual curation, we obtained a chromosome-scale assembly that represents 3,880 scaffolds with an N50 value of 142 Mb. From the Merqury assessment, PGP1 assembly achieved a high QV score of Q45.45. For a gene annotation, we predicted 106,789 genes with a liftover from the Gencode 38 and an assembly of transcriptome data.


2021 ◽  
Author(s):  
Sabrina Krakau ◽  
Daniel Straub ◽  
Hadrien Gourlé ◽  
Gisela Gabernet ◽  
Sven Nahnsen

The analysis of shotgun metagenomic data provides valuable insights into microbial communities, while allowing resolution at individual genome level. In absence of complete reference genomes, this requires the reconstruction of metagenome assembled genomes (MAGs) from sequencing reads. We present the nf-core/mag pipeline for metagenome assembly, binning and taxonomic classification. It can optionally combine short and long reads to increase assembly continuity and utilize sample-wise group-information for co-assembly and genome binning. The pipeline is easy to install - all dependencies are provided within containers -, portable and reproducible. It is written in Nextflow and developed as part of the nf-core initiative for best-practice pipeline development. All code is hosted on GitHub under the nf-core organization https://github.com/nf-core/mag and released under the MIT license.


2021 ◽  
Author(s):  
Michael O'Leary ◽  
Luis F. F. Arias-Giraldo ◽  
Lindsey Burbank ◽  
Leonardo De La Fuente ◽  
Blanca B. Landa

Xylella fastidiosa is a gram-negative plant pathogenic bacterium with wide geographical distribution and host range. X. fastidiosa strains are separated into genetically distinct subspecies, and further categorized into sequence types (ST). Genetic characterization of X. fastidiosa strains infecting blueberry has revealed that strains of subspecies multiplex and fastidiosa are capable of causing bacterial leaf scorch disease of blueberry under field conditions. To better elucidate the relationships among blueberry-infecting X. fastidiosa subsp. multiplex strains, we completed the genomes of an ST 42 strain, AlmaEM3, and a ST 43 strain, BB08-1, using a hybrid assembly approach. Comparison of these assemblies reveals a large (0.95 Mb) chromosomal inversion in BB08-1 relative to AlmaEM3 and the reference strain M12, likely resulting from recombination between prophage regions.


Sign in / Sign up

Export Citation Format

Share Document