subcellular compartmentalization
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 44)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Irene Murgia ◽  
Francesca Marzorati ◽  
Gianpiero Vigani ◽  
Piero Morandini

Abstract Iron (Fe) is an essential plant micronutrient since photosynthesis, respiration, the scavenging of reactive oxygen species and many other cellular processes depend on adequate Fe levels. Nonetheless, non-complexed Fe ions can be dangerous for cells, as they can act as a pro-oxidant. Therefore, plants possess a complex homeostatic control system for safely taking up Fe from the soil, transporting it to the various cellular destinations and for its subcellular compartmentalization. At the end of the plant’s life cycle, maturing seeds are loaded with the required amount of Fe for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed loading with Fe and take into account the Fe metabolism in wild crops’ relatives. These aspects of plant Fe nutrition can represent promising avenues for a better comprehension of the long road of Fe from soil to seeds.


2021 ◽  
Vol 22 (20) ◽  
pp. 10921
Author(s):  
Qonita Afinanisa ◽  
Min Kyung Cho ◽  
Hyun-A Seong

As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.


2021 ◽  
Author(s):  
Edgar Sanchez Ramirez ◽  
Thi Phuong Lien Ung ◽  
Ximena del Toro Rios ◽  
Guadalupe R. Fajardo Orduna ◽  
Lilia G. Noriega ◽  
...  

Adipocytes are the main cell type in adipose tissue, a critical regulator of metabolism, highly specialized in storing energy as fat. Adipocytes differentiate from multipotent mesenchymal stromal cells through adipogenesis, a tightly controlled differentiation process involving closely interplay between metabolic transitions and sequential programs of gene expression. However, the specific gears driving this interplay remain largely obscure. Additionally, the metabolite nicotinamide adenine dinucleotide (NAD+) is becoming increasingly recognized as a regulator of lipid metabolism, being postulated as promising therapeutic target for dyslipidemia and obesity. Here, we explored the effect of manipulating NAD+ bioavailability during adipogenic differentiation from human mesenchymal stem cells. We found a previously unappreciated strong repressive role for NAD+ on adipocyte commitment, while a functional NAD+-dependent deacetylase SIRT1 appeared crucial for terminal differentiation of pre-adipocytes. Remarkably, repressing the NAD+ biosynthetic salvage pathway during adipogenesis promoted the adipogenic transcriptional program, suggesting that SIRT1 activity during adipogenesis is independent from the NAD+ salvage pathway, while two photon microscopy and extracellular flux analyses suggest that its activation relies on the metabolic switch. Interestingly, SIRT1-directed control of subcellular compartmentalization of redox metabolism during adipogenesis was evidenced by two-photon fluorescence lifetime microscopy.


2021 ◽  
Vol 22 (18) ◽  
pp. 9945
Author(s):  
Luisa Galla ◽  
Nicola Vajente ◽  
Diana Pendin ◽  
Paola Pizzo ◽  
Tullio Pozzan ◽  
...  

Calcium (Ca2+) exerts a pivotal role in controlling both physiological and detrimental cellular processes. This versatility is due to the existence of a cell-specific molecular Ca2+ toolkit and its fine subcellular compartmentalization. Study of the role of Ca2+ in cellular physiopathology greatly benefits from tools capable of quantitatively measuring its dynamic concentration ([Ca2+]) simultaneously within organelles and in the cytosol to correlate localized and global [Ca2+] changes. To this aim, as nucleoplasm Ca2+ changes mirror those of the cytosol, we generated a novel nuclear-targeted version of a Föster resonance energy transfer (FRET)-based Ca2+ probe. In particular, we modified the previously described nuclear Ca2+ sensor, H2BD3cpv, by substituting the donor ECFP with mCerulean3, a brighter and more photostable fluorescent protein. The thorough characterization of this sensor in HeLa cells demonstrated that it significantly improved the brightness and photostability compared to the original probe, thus obtaining a probe suitable for more accurate quantitative Ca2+ measurements. The affinity for Ca2+ was determined in situ. Finally, we successfully applied the new probe to confirm that cytoplasmic and nucleoplasmic Ca2+ levels were similar in both resting conditions and upon cell stimulation. Examples of simultaneous monitoring of Ca2+ signal dynamics in different subcellular compartments in the very same cells are also presented.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1990
Author(s):  
Inmaculada Navarro-Lérida ◽  
Miguel Sánchez-Álvarez ◽  
Miguel Ángel del Pozo

Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression—a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP–GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3578
Author(s):  
Federica Mastroiacovo ◽  
Francesca Biagioni ◽  
Paola Lenzi ◽  
Larisa Ryskalin ◽  
Stefano Puglisi-Allegra ◽  
...  

The heat shock protein (HSP) 70 is considered the main hallmark in preclinical studies to stain the peri-infarct region defined area penumbra in preclinical models of brain ischemia. This protein is also considered as a potential disease modifier, which may improve the outcome of ischemic damage. In fact, the molecule HSP70 acts as a chaperonine being able to impact at several level the homeostasis of neurons. Despite being used routinely to stain area penumbra in light microscopy, the subcellular placement of this protein within area penumbra neurons, to our knowledge, remains undefined. This is key mostly when considering studies aimed at deciphering the functional role of this protein as a determinant of neuronal survival. The general subcellular placement of HSP70 was grossly reported in studies using confocal microscopy, although no direct visualization of this molecule at electron microscopy was carried out. The present study aims to provide a direct evidence of HSP70 within various subcellular compartments. In detail, by using ultrastructural morphometry to quantify HSP70 stoichiometrically detected by immuno-gold within specific organelles we could compare the compartmentalization of the molecule within area penumbra compared with control brain areas. The study indicates that two cell compartments in control conditions own a high density of HSP70, cytosolic vacuoles and mitochondria. In these organelles, HSP70 is present in amount exceeding several-fold the presence in the cytosol. Remarkably, within area penumbra a loss of such a specific polarization is documented. This leads to the depletion of HSP70 from mitochondria and mostly cell vacuoles. Such an effect is expected to lead to significant variations in the ability of HSP70 to exert its physiological roles. The present findings, beyond defining the neuronal compartmentalization of HSP70 within area penumbra may lead to a better comprehension of its beneficial/detrimental role in promoting neuronal survival.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangita Baruah ◽  
Monashree Sarma Bora ◽  
Sanghita Dutta ◽  
Kalyan Kumar Hazarika ◽  
Pronab Mudoi ◽  
...  

AbstractAntimony (Sb) is considered as a priority toxic metalloid in the earth crust having no known biological function. The current study was carried out in a hydroponic experiment to study the accumulation of ecotoxic Sb in subcellular level, and to find out the ultrastructural damage caused by Sb in different vegetative parts of Trapa natans. Sb-induced structural and ultrastructural changes of T. natans were investigated using scanning electron microscope (SEM) and transmission electron microscope (TEM). Experimental plants were exposed to different Sb(III) treatments: SbT1 (1.5 μmol/L), SbT2 (40 μmol/L) and SbT3 (60 μmol/L). Calculated bioconcentration factor (BCF) and translocation factor (TF) showed that at higher concentration (SbT2, SbT3), T. natans is a potent phytoexcluder whereas it can translocate a substantial amount of Sb to the aerial parts at lower concentration (SbT1). SEM analysis revealed Sb-mediated structural changes in the size of stomatal aperture, intercellular spaces and vascular bundles of different vegetative tissues of T. natans. TEM results showed subcellular compartmentalization of Sb in vacuole and cell wall as electron dense deposition. This is considered as a part of strategy of T. natans to detoxify the deleterious effects under Sb stress conditions. Fourier transform infrared spectroscopy (FTIR) study of plant biomass revealed possible metabolites of T. natans which can bind Sb.


EMBO Reports ◽  
2021 ◽  
Author(s):  
Pui Yuen Chung ◽  
Keisuke Shoji ◽  
Natsuko Izumi ◽  
Yukihide Tomari

2021 ◽  
Vol 22 (9) ◽  
pp. 4969
Author(s):  
Francesca Tosetti ◽  
Massimo Alessio ◽  
Alessandro Poggi ◽  
Maria Raffaella Zocchi

Enzymes, once considered static molecular machines acting in defined spatial patterns and sites of action, move to different intra- and extracellular locations, changing their function. This topological regulation revealed a close cross-talk between proteases and signaling events involving post-translational modifications, membrane tyrosine kinase receptors and G-protein coupled receptors, motor proteins shuttling cargos in intracellular vesicles, and small-molecule messengers. Here, we highlight recent advances in our knowledge of regulation and function of A Disintegrin And Metalloproteinase (ADAM) endopeptidases at specific subcellular sites, or in multimolecular complexes, with a special focus on ADAM10, and tumor necrosis factor- convertase (TACE/ADAM17), since these two enzymes belong to the same family, share selected substrates and bioactivity. We will discuss some examples of ADAM10 activity modulated by changing partners and subcellular compartmentalization, with the underlying hypothesis that restraining protease activity by spatial segregation is a complex and powerful regulatory tool.


Sign in / Sign up

Export Citation Format

Share Document