tubule cell
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 34)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
pp. ASN.2021050693
Author(s):  
Julie Bejoy ◽  
Eddie Qian ◽  
Lauren Woodard

Acute kidney injury (AKI) affects approximately 13.3 million people around the world each year, causing chronic kidney disease and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that aren't mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a17 chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.


Urolithiasis ◽  
2021 ◽  
Author(s):  
Xiu Guo Gan ◽  
Hai Tao Xu ◽  
Zhi Hao Wang

AbstractThe mechanism underlying phosphatidylserine eversion in renal tubule cells following calcium oxalate-mediated damage remains unclear; therefore, we investigated the effects of TGF-β1/Smad signaling on phosphatidylserine eversion in the renal tubule cell membrane during the early stage of kidney stone development. In a rat model of early stage of calcium oxalate stone formation, phosphatidylserine eversion on the renal tubular cell membrane was detected by flow cytometry, and the expression of TGF-β1 (transforming growth factor-β1), Smad7, and phospholipid scramblase in the renal tubular cell membrane was measured by western blotting. We observed that the TGF-β1/Smad signaling pathway increased phosphatidylserine eversion at the organism level. The results of in vitro studies demonstrated that oxalate exposure to renal tubule cells induced TGF-β1 expression, increasing phospholipid scramblase activity and phosphatidylserine eversion in the renal tubule cell membrane. These results indicate that TGF-β1 stimulates phosphatidylserine eversion by increasing the phospholipid scramblase activity in the renal tubule cell membrane during the early stage of kidney stone development. The results of this study form a basis for further detailed research on the development of therapeutic agents that specifically treat urolithiasis and exert fewer adverse effects.


Cryobiology ◽  
2021 ◽  
Vol 103 ◽  
pp. 181
Author(s):  
Heather E. Tomalty ◽  
Virginia K. Walker ◽  
Peter L. Davies

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250996
Author(s):  
Yasaman Ramazani ◽  
Noël Knops ◽  
Sante Princiero Berlingerio ◽  
Oyindamola Christiana Adebayo ◽  
Celien Lismont ◽  
...  

The calcineurin inhibitors (CNI) cyclosporine A and tacrolimus comprise the basis of immunosuppressive regimes in all solid organ transplantation. However, long-term or high exposure to CNI leads to histological and functional renal damage (CNI-associated nephrotoxicity). In the kidney, proximal tubule cells are the only cells that metabolize CNI and these cells are believed to play a central role in the origin of the toxicity for this class of drugs, although the underlying mechanisms are not clear. Several studies have reported oxidative stress as an important mediator of CNI-associated nephrotoxicity in response to CNI exposure in different available proximal tubule cell models. However, former models often made use of supra-therapeutic levels of tissue drug exposure. In addition, they were not shown to express the relevant enzymes (e.g., CYP3A5) and transporters (e.g., P-glycoprotein) for the metabolism of CNI in human proximal tubule cells. Moreover, the used methods for detecting ROS were potentially prone to false positive results. In this study, we used a novel proximal tubule cell model established from human allograft biopsies that demonstrated functional expression of relevant enzymes and transporters for the disposition of CNI. We exposed these cells to CNI concentrations as found in tissue of stable solid organ transplant recipients with therapeutic blood concentrations. We measured the glutathione redox balance in this cell model by using organelle-targeted variants of roGFP2, a highly sensitive green fluorescent reporter protein that dynamically equilibrates with the glutathione redox couple through the action of endogenous glutaredoxins. Our findings provide evidence that CNI, at concentrations commonly found in allograft biopsies, do not alter the glutathione redox balance in mitochondria, peroxisomes, and the cytosol. However, at supra-therapeutic concentrations, cyclosporine A but not tacrolimus increases the ratio of oxidized/reduced glutathione in the mitochondria, suggestive of imbalances in the redox environment.


2021 ◽  
pp. ASN.2021020253
Author(s):  
Marine Berquez ◽  
Patrick Krohn ◽  
Alessandro Luciani ◽  
Olivier Devuyst

2021 ◽  
Vol 135 (2) ◽  
pp. 409-427
Author(s):  
Daqian Gu ◽  
Dandong Fang ◽  
Mingming Zhang ◽  
Jingwen Guo ◽  
Hongmei Ren ◽  
...  

Abstract Hypertensive nephropathy (HN) is a common cause of end-stage renal disease with renal fibrosis; chronic kidney disease is associated with elevated serum gastrin. However, the relationship between gastrin and renal fibrosis in HN is still unknown. We, now, report that mice with angiotensin II (Ang II)-induced HN had increased renal cholecystokinin receptor B (CCKBR) expression. Knockout of CCKBR in mice aggravated, while long-term subcutaneous infusion of gastrin ameliorated the renal injury and interstitial fibrosis in HN and unilateral ureteral obstruction (UUO). The protective effects of gastrin on renal fibrosis can be independent of its regulation of blood pressure, because in UUO, gastrin decreased renal fibrosis without affecting blood pressure. Gastrin treatment decreased Ang II-induced renal tubule cell apoptosis, reversed Ang II-mediated inhibition of macrophage efferocytosis, and reduced renal inflammation. A screening of the regulatory factors of efferocytosis showed involvement of peroxisome proliferator-activated receptor α (PPAR-α). Knockdown of PPAR-α by shRNA blocked the anti-fibrotic effect of gastrin in vitro in mouse renal proximal tubule cells and macrophages. Immunofluorescence microscopy, Western blotting, luciferase reporter, and Cut&tag-qPCR analyses showed that CCKBR may be a transcription factor of PPAR-α, because gastrin treatment induced CCKBR translocation from cytosol to nucleus, binding to the PPAR-α promoter region, and increasing PPAR-α gene transcription. In conclusion, gastrin protects against HN by normalizing blood pressure, decreasing renal tubule cell apoptosis, and increasing macrophage efferocytosis. Gastrin-mediated CCKBR nuclear translocation may make it act as a transcription factor of PPAR-α, which is a novel signaling pathway. Gastrin may be a new potential drug for HN therapy.


Cryobiology ◽  
2020 ◽  
Vol 97 ◽  
pp. 256
Author(s):  
Heather E. Tomalty ◽  
Olga Kukal ◽  
Thomas Allen ◽  
Virginia K. Walker ◽  
Peter L. Davies

2020 ◽  
Vol 32 (1) ◽  
pp. 86-97
Author(s):  
Syed J. Khundmiri ◽  
Lihe Chen ◽  
Eleanor D. Lederer ◽  
Chin-Rang Yang ◽  
Mark A. Knepper

BackgroundCultured cell lines are widely used for research in the physiology, pathophysiology, toxicology, and pharmacology of the renal proximal tubule. The lines that are most appropriate for a given use depend upon the genes expressed. New tools for transcriptomic profiling using RNA sequencing (RNA-Seq) make it possible to catalog expressed genes in each cell line.MethodsFourteen different proximal tubule cell lines, representing six species, were grown on permeable supports under conditions specific for the respective lines. RNA-Seq followed standard procedures.ResultsTranscripts expressed in cell lines variably matched transcripts selectively expressed in native proximal tubule. Opossum kidney (OK) cells displayed the highest percentage match (45% of proximal marker genes [TPM threshold =15]), with pig kidney cells (LLC-PK1) close behind (39%). Lower-percentage matches were seen for various human lines, including HK-2 (26%), and lines from rodent kidneys, such as NRK-52E (23%). Nominally, identical OK cells from different sources differed substantially in expression of proximal tubule markers. Mapping cell line transcriptomes to gene sets for various proximal tubule functions (sodium and water transport, protein transport, metabolic functions, endocrine functions) showed that different lines may be optimal for experimentally modeling each function. An online resource (https://esbl.nhlbi.nih.gov/JBrowse/KCT/) has been created to interrogate cell line transcriptome data. Proteomic analysis of NRK-52E cells confirmed low expression of many proximal tubule marker proteins.ConclusionsNo cell line fully matched the transcriptome of native proximal tubule cells. However, some of the lines tested are suitable for the study of particular metabolic and transport processes seen in the proximal tubule.


2020 ◽  
Vol 39 (5) ◽  
pp. 452-464
Author(s):  
Miriam E. Mossoba ◽  
Robert L. Sprando

The renal proximal tubule cell line, human kidney 2 (HK-2), recapitulates many of the functional cellular and molecular characteristics of differentiated primary proximal tubule cells. These features include anchorage dependence, gluconeogenesis capability, and sodium-dependent sugar transport. In order to ascertain how well HK-2 cells can reliably reveal the toxicological profile of compounds having a potential to cause proximal tubule injury in vivo, we sought to evaluate the effects of known proximal tubule toxicants using the HK-2 cell line. We selected 20 pure nephrotoxic compounds that included chemotherapeutic drugs, antibiotics, and heavy metal-containing compounds and evaluated their ability to induce HK-2 cell injury relative to 10 innocuous pure compounds or cell culture media alone. We performed a comprehensive set of in vitro cellular toxicological assays to evaluate cell viability, oxidative stress, mitochondrial integrity, and a specific biomarker of renal injury, Kidney Injury Molecule 1. For each of our selected compounds, we were able to establish a reproducible profile of toxicological outcomes. We compared our results to those described in peer-reviewed publications to understand how well the HK-2 cellular model agrees with overall in vivo rat or human toxicological outcomes. This study begins to address the question of how well in vitro data generated with HK-2 cells can mirror in vivo animal and human outcomes.


Sign in / Sign up

Export Citation Format

Share Document