local electron
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 39)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 130 (1) ◽  
pp. 151
Author(s):  
Е.A. Смирнова ◽  
Н.А. Лозинг ◽  
М.Г. Гладуш ◽  
А.В. Наумов

The current paper demonstrates theoretical analysis of two types of spectral curves for several configurations of system of two-level light emitters, considering the influence of local field and close environment inside a transparent medium. Probe field absorption spectra and resonant fluorescence spectra are calculated under excitation of a strong monochromatic cw laser. The sensitivity of absorption and emission optical spectroscopy method is compared for revealing the effects of the medium on individual emitters and their ensembles. Spectral curves were calculated for model emitters considering local field influence of a transparent dielectric medium and local electron-phonon interactions, which determined the response of the emitters to an external laser field and effective relaxation mechanisms. The calculation formalism is based on a semiclassical approach, while the relaxation processes associated with the phonon contribution are introduced phenomenologically with references to other studies.


2022 ◽  
Vol 92 (2) ◽  
pp. 315
Author(s):  
С.Ф. Белых ◽  
А.Д. Беккерман

The processes of ionization of atoms sputtered under bombardment of clean metal surface by singly and multiply charged ions with kinetic energy of several keV were studied. Within the framework of simple phenomenological model of ion formation, the relaxation of local electron excitation in metal was taking into account. Analytical expressions for estimation of ionization probability of sputtered atoms was obtain. It was shown, that in comparison with singly charged ions, bombardment of metals with multiply charged ions results to significant increase of ionization probability of sputtered atoms due to more efficient excitation of electrons and increase of relaxation time of this excitation.


2022 ◽  
Vol 17 (01) ◽  
pp. C01032
Author(s):  
J. Karhunen ◽  
A. Holm ◽  
B. Lomanowski ◽  
V. Solokha ◽  
S. Aleiferis ◽  
...  

Abstract A previously presented Monte Carlo method for estimating local plasma conditions in 2D based on intensity ratios of deuterium Balmer D α , D γ and D ɛ lines was amended to consider also the D α and D γ emission contributions arising from molecular processes. The obtained estimates were used to infer the molecular divertor density with the help of the molecular databases of EIRENE. The method was benchmarked against EDGE2D-EIRENE simulations and observed to reproduce the molecularly induced emission fractions and the molecular divertor densities primarily within 25% of the references. Experimental analysis of a JET L-mode density scan suggested molecularly induced D α and D γ contributions of up to 60–70% and 20%, respectively, during the process of detachment. The independent estimates of the molecular divertor density inferred from the obtained molecularly induced D α and D γ intensities agree within uncertainties with each other. Both estimates show the molecular density increasing up to approximately 1.0–2.0 × 1020 m−3 at the outer strike point in deep detachment with its ratio to the local electron density agreeing with EDGE2D-EIRENE predictions within the scatter of the experimental data.


2021 ◽  
Vol 14 (12) ◽  
pp. 121005
Author(s):  
Naoki Morishita ◽  
Yasuhiro Oishi ◽  
Terufumi Yamaguchi ◽  
Koichi Kusakabe

Abstract A resource state for measurement-based quantum computation is proposed using a material design of S = 1 antiferromagnetic spin chains. Specifying hydrogen adsorption positions on polymerized phenalenyl-tessellation molecules gives rise to formation of graphene zero modes that produce local S = 1 spins or S = 1/2 spins in the required order through exchange interactions. When the S = 1 antiferromagnetic Heisenberg models serve as quantum-computation resources, hydrogen adatoms inducing zero modes can also work as local electron-spin probes in nuclear spin spectroscopy, which could be used for controlling and measuring local spins.


Author(s):  
Cariappa K S ◽  
Niladri Sarkar

Abstract This work investigates the effect of defects on the electron density profiles of nanowire FETs with a rectangular cross-section. It also presents a framework for the discretization of the nanowire channels with defects. A self-consistent procedure using Schrodinger-Poisson solver with density matrix formalism calculates the local electron density profiles. The local electron density decreases due to defect-induced scattering potentials. The electron density profiles vary according to the nature of the intrinsic defects. The effect of defect-induced potentials on the output characteristics of the nanowire FET device is studied using the non-equilibrium Green's function (NEGF) methodology. An increase in scattering potential in the nanowire channel causes a considerable decrease in the saturation voltage and current. This results in a faster saturation which changes the overall device performance. Hence, defect-controlled channels can be utilized to fabricate FETs with desired characteristics.


2021 ◽  
pp. 149-153
Author(s):  
D.G. Solyakov ◽  
Yu.Ye. Volkova ◽  
I.E. Garkusha ◽  
A.K. Marchenko ◽  
M.S. Ladygina ◽  
...  

The local electron temperature measurements with the double electric probe in the compression zone are presented. Electric probes make it possible to measure the electron temperature with a reasonably good spatial resolution. Double electric probe application for electron temperature measurements in the dense self-compressed plasma stream is discussed. We have shown experimentally that the electric probe operates in a diffusion regime.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Bakaev ◽  
Giovanni Bonny ◽  
Nicolas Castin ◽  
Dmitry Terentyev ◽  
Viktor A. Bakaev

AbstractAb initio simulations are employed to assess the interaction of typical interstitial impurities with self-interstitial atoms, dislocation loops and edge dislocation lines in tungsten. These impurities are present in commercial tungsten grades and are also created as a result of neutron transmutation or the plasma in-take process. The relevance of the study is determined by the application of tungsten as first wall material in fusion reactors. For the defects with dislocation character, the following ordering of the interaction strength was established: H < N < C < O < He. The magnitude of the interaction energy was rationalized by decomposing it into elastic (related to the lattice strain) and chemical (related to local electron density) contributions. To account for the combined effect of impurity concentration and pinning strength, the impact of the presence of these impurities on the mobility of isolated dislocation loops was studied for DEMO relevant conditions in the non-elastic and dilute limit.


Sign in / Sign up

Export Citation Format

Share Document