electrodynamic force
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Vladimir Bolyukh ◽  
Оleksandr Vinnichenko ◽  
Anatolii Omelchenko

The purpose of the study is to analyse the influence of the excitation of an induction-dynamic catapult of a ballistic laser gravimeter from an AC voltage source at different frequencies on electromechanical indicators that provide a reduced value of the auto seismic component of error in measuring the gravitational acceleration g due to a decrease in the recoil force. A mathematical model of the gravimeter catapult when excited from an AC voltage source is proposed, taking into account the interrelated electrical, magnetic and mechanical processes. The nature of the electromechanical processes in the catapult of the gravimeter with such excitation has been established. It is shown that a phase shift occurs between the currents in active elements, as a result of which positive (repulsive) pulses of the electrodynamic force alternate with negative (attractive) pulses of force. A criterion for the efficiency of the gravimeter catapult has been introduced, taking into account the maximum value of push of the test body at the smallest values of the electrodynamic force and current of the inductor winding. It was found that the highest efficiency of the gravimeter catapult is provided at a frequency of 250 Hz, at which the catapult efficiency is 3.5 times higher than at a frequency of 50 Hz. It is shown that the transition from the method of excitation of an induction-dynamic catapult with one short pulse to excitation from an AC voltage source makes it possible to reduce the uncertainty in measuring the gravitational acceleration.


Author(s):  
Xiaonan Zhu ◽  
Fei Yang ◽  
Haoran Wang ◽  
Siyuan Zhao ◽  
Yifei Wu ◽  
...  

Abstract Intrinsic roughness of solid surfaces causes a series of inevitable shortcomings in the use of mechanical electrical contacts, among which one of the most fatal is the repulsive electrodynamic force arising from high currents. A large contact force coming from a heavy holding mechanism helps to suppress the repulsive effect whereas the mechanism consumes energy and remains to be challenging for a compact switching device. Here, a liquid metal (LM) bridge is introduced to wet solid electrodes to eliminate contact issues. Four instability patterns induced by the electromagnetic pinch effect are identified to characterize LM bridge’s response to high currents. Simulation results reveal that an inner vortex caused by uneven distributions of current density and electrodynamic volume force leads to the rupture of a necked LM bridge. With a uniform structure, a cylindrical LM bridge is proved to be robust with respect to an impulse current higher than 10 kA, exceeding a commercial compact relay by a factor of more than 10 in terms of current withstand performance. Our research facilitates compact and energy-saving switch equipment and has a potential to realize arbitrary desired levels of high current withstand without the use of a holding mechanism. This paper also offers deep insights into the high current applications of LM from the perspective of fluid related physical mechanisms.


Author(s):  
Viktoriia Lytvynenko ◽  
Alexander Sereda ◽  
Iryna Varshamova ◽  
Olena Korol

Circuit breakers for overcurrent protection of semiconductor converters limit the duration and amplitude of the overcurrent at such a level that its thermal effect does not exceed the maximum allowable thermal protection index of the protected semiconductor device. The limitation of the thermal action of the short-circuit current is achieved by reducing the operation time of the circuit breaker. The design of the circuit breaker is changed in such a way that instead of the basic electromagnetic release is used an induction-dynamic release, which consists of an inductor with a ferromagnetic core and a rotary armature in the form of a copper disk. The electrodynamic force producing by the induction-dynamic release for quick operation is determined by the coefficient of mutual inductance of the inductor coil and the armature. Using of a ferromagnetic core entailed an increase in the coefficient of mutual inductance of the coil and armature, therefore, an increase in the electrodynamic force producing by the release, and a decrease in own tripping time of the circuit breaker. On a prototype, an experimental study of the proper operation time of the release was carried out at various values of the electrical parameters of the capacitor bank of the inductor power supply, the winding parameters of the inductor coil and the disk dimensions. The research results have proved both a decrease in the tripping time of the circuit breaker while conserving the energy of the capacitor bank of the inductor, and a decrease in the required energy of the capacitor bank to power the inductor while maintaining the minimum tripping time of the circuit breaker. Reducing the energy of the capacitor bank of the inductor made it possible to reduce the capacity and voltage of the capacitor bank of the supply of the release, and, consequently, its dimensions.


Author(s):  
V.F. Bolyukh ◽  
Yu.V. Kashansky ◽  
I.S. Schukin

Purpose. The purpose of the article is to establish the basic laws of operation of induction-type linear electromechanical converter (LEMС) during operation in high-speed and shock-power modes and excitation from an AC source of increased frequency. Methodology. With the help of a mathematical model, the regularities of the course of processes in a LEMС, excited from an AC source, were established when working with shock-power and high-speed modes. The solutions of the equations of the mathematical model, which describe interrelated electrical, magnetic, mechanical and thermal processes, are presented in a recurrent form. Results. It was found that when the LEMC operates in the shock-power mode, the maximum value of the current in the inductor winding occurs in the first half-period, and in the inhibited armature winding in the second half-period. The electrodynamic force changes at twice the frequency, taking on both positive and negative values. Since the positive values exceed the negative ones, the magnitude of the impulse of the electrodynamic force increases with each period of the force. Depending on the initial voltage phase, the relative change in the magnitude of the force impulse is 1.5 %. It was found that when the LEMC operates in high-speed mode, the current in the inductor winding in the first half-period has the greatest value, but after several periods it takes on a steady state. The temperature rise of the inductor winding increases with the time of connection to the AC source, and the temperature rise of the armature winding has the nature of saturation. The electrodynamic force has an oscillatory character with strong damping and a significant predominance of the positive component. Depending on the initial phase of the voltage, the relative change in the maximum speed of the armature winding is 2.5 %. Originality. For the first time, a mathematical model of the LEMC, excited from an AC source, was developed, the solutions of the equations of which describe the interrelated electrical, magnetic, mechanical and thermal processes. For the first time, the regularities of the course of processes in LEMC were established when working with shock-power and high-speed modes. Practical value. The characteristics of LEMC are obtained, which determine the efficiency of work in shock-power and high-speed modes. It is shown that the initial voltage phase has no significant effect on the power, high-speed thermal performance of the converter excited from an alternating current source.


Small ◽  
2020 ◽  
Vol 16 (51) ◽  
pp. 2005594
Author(s):  
Rui Yang ◽  
Jiang Qian ◽  
Philip X.‐L. Feng

2020 ◽  
Vol 35 (39) ◽  
pp. 2050327
Author(s):  
Sergio Giardino

We develop a quaternionic electrodynamics and show that it naturally supports the existence of magnetic monopoles. We obtained the field equations, the continuity equation, the electrodynamic force law, the Poynting vector, the energy conservation, and the stress-energy tensor. The formalism also enabled us to generalize the Dirac monopole and the charge quantization rule.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xianghong Cao ◽  
Yanan Xu ◽  
Junfeng Sun ◽  
Honbo Qiu

Background: The influence of the second air-gap length on the performance of permanent magnet synchronous motor is usually ignored. A comparative analysis is made of line-start high-voltage permanent magnet synchronous motor in this paper. Objective: The purpose of this paper is to analyze the influence of the second air-gap length on the motor performance. Methods: A 10kV 1000kW permanent magnet synchronous motor is taken as an example and the model is established based on the finite element calculation method when the second air-gap length is different. The influence of the second air-gap length on the phasor diagram, no-load back electrodynamic force, starting performance and steady-state operation performance are studied. Based on the finite element calculation method, the torque angle, current, power factor, external power factor and d/q-axis current of the motor are analyzed, and the change of the motor phasor diagram is obtained. The influence of the second air-gap length on the no-load back electrodynamic force is studied. Results and Conclusion: The relationship between the no-load back electrodynamic force and the no-load air-gap fundamental magnetic field is determined, and the influence mechanism of the no-load air-gap fundamental magnetic field on no-load back electrodynamic force is revealed. Furthermore, the influence of the no-load back electrodynamic force on the starting performance is studied. Finally, the influence of the second air-gap length on the 10kV 1000kW permanent magnet synchronous motor steady-state performance is obtained. Based on the above analysis, some references are given for the design of motor.


Author(s):  
Kirill Bolotin ◽  
Evgeniy Leonidovich Shvidkii ◽  
Igor Sokolov ◽  
Sergey Alekseevich Bychkov

Purpose The purpose of this paper is to search optimal shape of soft magnetic composite-based inserts used to compensate the working gap between the liquid metal and the induction stirrer in metallurgical installations. Design/methodology/approach The study was based on numerical simulation of electromagnetic processes in frequency domain. To optimize inserts shape, the Nelder–Mead method was used. The maximum of integral electrodynamic force along x-axis was chosen as the objective function. All simulations were performed in finite element software package Comsol Multiphysics. Findings Optimal inserts shape was determined, at which the value of integral electrodynamic force along x-axis increased by 20% from 692  to 792 N. Originality/value Magnetic concentrators based on soft magnetic composite materials have long been used in high-frequency systems; at the same time, their use in low-frequency systems has not been previously considered in detail. The study of the shape effect of concentrators on the effectiveness of electromagnetic field in a liquid metal in a three-dimensional formulation was carried out for the first time.


2019 ◽  
Vol 1399 ◽  
pp. 055093
Author(s):  
A V Korzhov ◽  
A O Cherniavsky ◽  
M A Dziuba ◽  
D V Putenikhin ◽  
A I Kamynin

Sign in / Sign up

Export Citation Format

Share Document