measuring head
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 2130 (1) ◽  
pp. 012003
Author(s):  
P Lonkwic ◽  
T Krakowski ◽  
H Ruta

Abstract The systems that monitor individual components of machines and devices are under constant development. The ability to detect damages at an early stage allows failures to be prevented, so any uncontrolled downtime can be predicted in a controlled manner. Continuous monitoring of technical condition is an activity that also helps to reduce the losses due to equipment failures. However, not all areas can be monitored continuously. Such areas include lift guides where wear and tear can occur naturally, i.e. through abrasion of the material layer due to interaction with moving guide shoes or after emergency braking. Emergency braking causes local damages to the guide through plastic deformation of its surface resulting from indentation of the knurled roller of the brake. Such places are cleaned mechanically, which results in local reduction of the cross-sectional area. In such a case, it is difficult to continuously assess the technical condition of guides due to the prevailing operating conditions. Therefore, a concept of a head enabling assessment of the technical condition of guides at every stage of their operation has been developed. This article presents the novel concept of a magnetic head used for assessing the technical condition of lift guide rails that are the running track of lifting equipment. The initial tests were performed on the original test setup. The concept of the developed measuring head was verified for correct operation on specially prepared flat bars with holes. The results obtained in the form of laboratory tests proved that the proposed measuring head concept can be applied to the measurements under real conditions.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6028
Author(s):  
Danyon Stitt ◽  
Nick Draper ◽  
Keith Alexander ◽  
Natalia Kabaliuk

Concussion is an inherent risk of participating in contact, combat, or collision sports, within which head impacts are numerous. Kinematic parameters such as peak linear and rotational acceleration represent primary measures of concussive head impacts. The ability to accurately measure and categorise such impact parameters in real time is important in health and sports performance contexts. The purpose of this study was to assess the accuracy of the latest HitIQ Nexus A9 instrumented mouthguard (HitIQ Pty. Ltd. Melbourne Australia) against reference sensors in an aluminium headform. The headform underwent drop testing at various impact intensities across the NOCSAE-defined impact locations, comparing the peak linear and rotational acceleration (PLA and PRA) as well as the shapes of the acceleration time-series traces for each impact. Mouthguard PLA and PRA measurements strongly correlated with (R2 = 0.996 and 0.994 respectively), and strongly agreed with (LCCC = 0.997) the reference sensors. The root mean square error between the measurement devices was 1 ± 0.6g for linear acceleration and 47.4 ± 35 rad/s2 for rotational acceleration. A Bland–Altman analysis found a systematic bias of 1% for PRA, with no significant bias for PLA. The instrumented mouthguard displayed high accuracy when measuring head impact kinematics in a laboratory setting.


2021 ◽  
Vol 53 (8S) ◽  
pp. 160-160
Author(s):  
Jonathan D. Miller ◽  
Matthew J. Hermes ◽  
Dimitrije Cabarkapa ◽  
Andrew C. Fry ◽  
Cory J. Berkland

Author(s):  
Lee F. Gabler ◽  
Nathan Z. Dau ◽  
Gwansik Park ◽  
Alex Miles ◽  
Kristy B. Arbogast ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. 49
Author(s):  
Yiting Wu ◽  
Elisa Wirthmann ◽  
Ute Klöpzig ◽  
Tino Hausotte

This article presents a new metrological atomic force microscope (MAFM) with a homodyne interferometer and a tilt measuring system by a position sensitive device (PSD). The combination allows simultaneous three-dimensional detection of the tip displacement by capturing the position, bending and torsion of a reflecting surface of the cantilever realized with one laser beam. Based on an existing interferometric measuring head of a micro-tactile 3D probe, the sensor head was revised and adapted for atomic force microscopy. The new measuring system uses two tiltable plane mirrors to adjust the direction and position of a focused laser beam. With this adjustment unit, the focused laser beam can be steered perpendicular to the reflecting backside of the cantilever. Regarding the probe system, the optical design of the measuring head has been reengineered to reduce the disturbing interference on the PSD. A simulation applying the optical design program OpticStudio from Zemax shows that the integration of two wedge plates with a wedge angle of 0.5° reduces the disturbing interference significantly. After manufacturing, initial measurement results are presented to verify the functionality.


2021 ◽  
Vol 49 (3) ◽  
pp. 1119-1120
Author(s):  
Yuzhe Liu ◽  
August G. Domel ◽  
Seyed Abdolmajid Yousefsani ◽  
Jovana Kondic ◽  
Gerald Grant ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 1197
Author(s):  
Leandro Sottili ◽  
Laura Guidorzi ◽  
Anna Mazzinghi ◽  
Chiara Ruberto ◽  
Lisa Castelli ◽  
...  

At present, the use of non-destructive, non-invasive X-ray-based techniques is well established in heritage science for the analysis and conservation of works of art. X-ray fluorescence (XRF) plays a fundamental role since it provides information on the elemental composition, contributing to the identification of the materials present on the superficial layers of an artwork. Whenever XRF is combined with the capability of scanning an area to provide the elemental distribution on a surface, the technique is referred to as macro X-ray fluorescence (MA-XRF). The heritage science field, in which the technique is extensively applied, presents a large variety of case studies. Typical examples are paintings, ceramics, metallic objects and manuscripts. This work presents an uncommon application of MA-XRF analysis to furniture. Measurements have been carried out with the MA-XRF scanner of the INFN-CHNet collaboration at the Centro di Conservazione e Restauro “La Venaria Reale”, a leading conservation centre in the field. In particular, a chinoiserie lacquered cabinet of the 18th century and a desk by Pietro Piffetti (1701–1777) have been analysed with a focus on the characterisation of decorative layers and different materials (e.g., gilding in the former and ivory in the latter). The measurements have been carried out using a telemeter for non-planar surfaces, and with collimators of 0.8 mm and 0.4 mm diameter, depending on the spatial resolution needed. The combination of the small measuring head with the use of the telemeter and of a small collimator has guaranteed the ability to scan difficult-to-reach areas with high spatial resolution in a reasonable time (20 × 10 mm2 with 0.2 mm step in less than 20 min).


NeuroImage ◽  
2021 ◽  
Vol 225 ◽  
pp. 117494
Author(s):  
Charles J. Lynch ◽  
Henning U. Voss ◽  
Benjamin M. Silver ◽  
Jonathan D. Power
Keyword(s):  

NeuroImage ◽  
2021 ◽  
Vol 225 ◽  
pp. 117484
Author(s):  
E. Jolly ◽  
S. Sadhukha ◽  
L.J. Chang
Keyword(s):  

2021 ◽  
Vol 17 (1) ◽  
pp. 142-149
Author(s):  
Vienna-Jaye Burchell ◽  
Gemma Arblaster ◽  
David Buckley ◽  
Jonathan Wheat

Sign in / Sign up

Export Citation Format

Share Document