chemical sensitivity
Recently Published Documents


TOTAL DOCUMENTS

733
(FIVE YEARS 82)

H-INDEX

47
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Gesualdo M. Zucco ◽  
Richard L. Doty

Multiple Chemical Sensitivity (MCS), a condition also known as Chemical Sensitivity (CS), Chemical Intolerance (CI), Idiopathic Environmental Illness (IEI) and Toxicant Induced Loss of Tolerance (TILT), is an acquired multifactorial syndrome characterized by a recurrent set of debilitating symptoms. The symptoms of this controversial disorder are reported to be induced by environmental chemicals at doses far below those usually harmful to most persons. They involve a large spectrum of organ systems and typically disappear when the environmental chemicals are removed. However, no clear link has emerged among self-reported MCS symptoms and widely accepted objective measures of physiological dysfunction, and no clear dose-response relationship between exposure and symptom reactions has been observed. In addition, the underlying etiology and pathogenic processes of the disorder remain unknown and disputed, although biologic and psychologic hypotheses abound. It is currently debated whether MCS should be considered a clinical entity at all. Nevertheless, in the last few decades MCS has received considerable scientific and governmental attention in light of the many persons reporting this illness. In this review, we provide a general overview of the history, definition, demographics, prevalence, and etiologic challenges in defining and understanding MCS.


Author(s):  
Shannon Koplitz ◽  
Heather Simon ◽  
Barron Henderson ◽  
Jennifer Liljegren ◽  
Gail Tonnesen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi-Ping Li ◽  
Jun-Cheng Jiang ◽  
An-Chi Huang ◽  
Yan Tang ◽  
Chun-Feng Miao ◽  
...  

AbstractNitrocellulose (NC) is widely used in both military and civilian fields. Because of its high chemical sensitivity and low decomposition temperature, NC is prone to spontaneous combustion. Due to the dangerous properties of NC, it is often dissolved in other organic solvents, then stored and transported in the form of a solution. Therefore, this paper took NC solutions (NC-S) with different concentrations as research objects. Under different atmospheric conditions, a series of thermal analysis experiments and different reaction kinetic methods investigated the influence of solution concentration and oxygen concentration on NC-S’s thermal stability. The variation rules of NC-S’s thermodynamic parameters with solution and oxygen concentrations were explored. On this basis, the spontaneous combustion characteristics of NC-S under actual industrial conditions were summarized to put forward the theoretical guidance for the spontaneous combustion treatment together with the safety in production, transportation, and storage.


Author(s):  
Anne A. Bjerregaard ◽  
Marie W. Petersen ◽  
Lise Kirstine Gormsen ◽  
Sine Skovbjerg ◽  
Niklas R. Jørgensen ◽  
...  

Multiple chemical sensitivity (MCS) is a multisystem syndrome, and limited knowledge of its pathophysiology exists. Based on the population-based Danish cohort DanFunD, this study investigated metabolic health in people with MCS compared to individuals who did not have MCS. From 9656 cohort participants aged 18–76 years old, 1.95% were categorized as MCS individuals with comorbid functional somatic disorders (MCS + FSD, n = 188), and 1.13% were categorized as MCS without functional somatic disorders (MCS ÷ FSD, n = 109). MCS was characterized based on three criteria: the experience of symptoms upon exposure to common odors and airborne chemicals, symptoms related the central nervous systems and others organ symptoms, and significant impact on every day, social, and occupational life. The remaining study population without MCS or any other functional somatic disorders were regarded as controls. We used adjusted multiple linear regression with link-function to evaluate the associations between lipid and glucose metabolism markers and MCS. We also tested the odds ratio of metabolic syndrome in MCS. Results did not point to statistically significant associations between lipid biomarkers or metabolic syndrome and both MCS groups compared to the controls. We found that MCS individuals may be more insulin resistant and that MCS ÷ FSD may have an impaired glucose metabolism when compared to controls.


Author(s):  
Pia Nynäs ◽  
Sarkku Vilpas ◽  
Elina Kankare ◽  
Jussi Karjalainen ◽  
Lauri Lehtimäki ◽  
...  

A considerable proportion of patients having respiratory tract or voice symptoms associated with workplace moisture damage (MD) could have multiple chemical sensitivity (MCS). MCS is characterized by symptoms of different organ systems in association with low-level chemical exposure. The objective of this study was to assess the prevalence of MCS among patients referred to secondary health care because of respiratory or voice symptoms associated with workplace MD compared to the general working-age population. Using three subscales of the QEESI© questionnaire, we assessed MCS in the study patients and 1500 controls in the same district randomly selected from the Finnish Population Information System. Study patients had significantly more often high scores in chemical intolerance (39% vs. 23%, p = 0.001), symptom severity (60% vs. 27%, p < 0.001), and life impact subscales (53% vs. 20%, p < 0.001). Asthma, chronic rhinosinusitis, laryngeal problems, and atopy were not associated with the presence of MCS. MCS is common among patients referred to secondary health care with respiratory tract and/or voice symptoms associated with workplace MD, and it considerably affects their everyday life. MCS should be considered as a possible explanatory factor for MD-associated symptoms.


2021 ◽  
Author(s):  
Yuvaraj Sivalingam ◽  
Gabriele Magna ◽  
Ramji Kalidoss ◽  
Sarathbavan Murugan ◽  
David Chidambaram ◽  
...  

Abstract The development of electronic noses requires the control of the selectivity pattern of each sensor of the array. Organic chemistry offers a manifold of possibilities to this regard but in many cases the chemical sensitivity is not matched with the response of electronic sensor. The combination of organic and inorganic materials is an approach to transfer the chemical sensitivities of the sensor to the measurable electronic signals. In this paper, this approach is demonstrated with a hybrid material made of phthalocyanines and a bilayer structure of ZnO and TiO2. Results show that the whole spectrum of sensitivity of phthalocyanines results in changes of the resistance of the sensor, and even the adsorption of compounds, such as hexane, which cannot change the resistance of pure phthalocyanine layers, elicits changes of the sensor resistance. Furthermore, since phthalocyanines are optically active, the sensitivity in dark and visible light are different. Thus, operating the sensor in dark and light two different signals per sensors can be extracted. As a consequence, an array of 3 sensors made of different phthalocyanines results in a virtual array of six sensors. The sensor array shows a remarkable selectivity respect to a set of test compounds. Principal component analysis scores plot illustrates that hydrogen bond basicity and dispersion interaction are the dominant mechanisms of interaction.


Author(s):  
Giovanni Damiani ◽  
Marco Alessandrini ◽  
Daniela Caccamo ◽  
Andrea Cormano ◽  
Gianpaolo Guzzi ◽  
...  

Multiple chemical sensitivity (MCS) is a multisystem, recurrent, environmental disorder that flares in response to different exposures (i.e., pesticides, solvents, toxic metals and molds) under the threshold limit value (TLV) calculated for age and gender in the general population. MCS is a syndrome characterized by cutaneous, allergic, gastrointestinal, rheumatological, endocrinological, cardiological and neurological signs and symptoms. We performed a systematic review of the literature to summarize the current clinical and therapeutic evidence and then oriented an eDelphi consensus. Four main research domains were identified (diagnosis, treatment, hospitalization and emergency) and discussed by 10 experts and an MCS patient. Thus, the first Italian MCS consensus had the double aim: (a) to improve MCS knowledge among healthcare workers and patients by standardizing the clinical and therapeutic management to MCS patients; and (b) to improve and shed light on MCS misconceptions not supported by evidence-based medicine (EBM).


2021 ◽  
Vol 9 ◽  
Author(s):  
Paolo Solari ◽  
Viviana Pasquini ◽  
Marco Secci ◽  
Angelica Giglioli ◽  
Roberto Crnjar ◽  
...  

Like other animals, echinoderms rely on chemical senses to detect and localize food resources. Here, we evaluate the chemical sensitivity of the sea urchin Paracentrotus lividus to a number of stimuli possibly related to food, such as a few sugars, compared to the blue-green algae Spirulina (Arthrospira platensis). To do this we developed a simple, innovative method based on the recording of “urchinograms” estimating the movements of spines, pedicellariae, tube feet, and eventually of the whole sea urchin, in response to chemicals, while keeping both the whole animal and the stimulus in their natural environment, underwater. Our results show that Spirulina is a highly stimulating compound for the sea urchin, by acting in a dose-dependent manner. The animals resulted also sensitive, even if to a lesser extent, to some sugars, such as the monosaccharide glucose, but not to its isomer fructose, while among disaccharides, they sensed cellobiose, but not sucrose or trehalose. From an applied point of view, any insight into the chemical sensitivity of sea urchins toward potential food-related compounds may lead to the discovery of key chemicals that would help improve the efficiency and reduce the costs of dietary substrates for optimization of intensive rearing strategies. Although this method has been developed for P. lividus, it will be suitable to evaluate the chemical sensitivity of other echinoderms and other marine invertebrates characterized by low mobility.


2021 ◽  
Vol 22 (20) ◽  
pp. 10997
Author(s):  
Brett Boonen ◽  
Justyna B. Startek ◽  
Alina Milici ◽  
Alejandro López-Requena ◽  
Melissa Beelen ◽  
...  

Background: The transient receptor potential ankyrin 1 (TRPA1) cation channels function as broadly-tuned sensors of noxious chemicals in many species. Recent studies identified four functional TRPA1 isoforms in Drosophila melanogaster (dTRPA1(A) to (D)), but their responses to non-electrophilic chemicals are yet to be fully characterized. Methods: We determined the behavioral responses of adult flies to the mammalian TRPA1 non-electrophilic activators citronellal and menthol, and characterized the effects of these compounds on all four dTRPA1 channel isoforms using intracellular Ca2+ imaging and whole-cell patch-clamp recordings. Results: Wild type flies avoided citronellal and menthol in an olfactory test and this behavior was reduced in dTrpA1 mutant flies. Both compounds activate all dTRPA1 isoforms in the heterologous expression system HEK293T, with the following sensitivity series: dTRPA1(C) = dTRPA1(D) > dTRPA1(A) ≫ dTRPA1(B) for citronellal and dTRPA1(A) > dTRPA1(D) > dTRPA1(C) > dTRPA1(B) for menthol. Conclusions: dTrpA1 was required for the normal avoidance of Drosophila melanogaster towards citronellal and menthol. All dTRPA1 isoforms are activated by both compounds, but the dTRPA1(B) is consistently the least sensitive. We discuss how these findings may guide further studies on the physiological roles and the structural bases of chemical sensitivity of TRPA1 channels.


Sign in / Sign up

Export Citation Format

Share Document