high melting point
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 71)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Author(s):  
E. Boytsov

Abstract. This paper is dedicated to the features of the processes of 3D printing of polymers with a high melting point such as PEEK, CarbonPEEK, ULTEM, PPSU using FDM (FFF) technology. The results of 3D printing with high-performance polymers using different conditions of the heated chamber are presented. Conclusions about the advantages of a heated chamber are made.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1453
Author(s):  
Carolyn Carradero Santiago ◽  
Bharat Yelamanchi ◽  
Jose Angel Diosdado De la Peña ◽  
Jeffrey Lamb ◽  
Krzysztof Roguski ◽  
...  

Polyetheretherketone (PEEK) has been the focus of substantial additive manufacturing research for two principal reasons: (a) the mechanical performance approaches that of aluminum at relatively high temperatures for thermoplastics and (b) the potential for qualification in both the aerospace and biomedical industries. Although PEEK provides outstanding strength and thermal stability, printing can be difficult due to the high melting point. Recently, high-temperature soluble support has enabled the printing of lattices and stochastic foams with overhanging features in these high-performance carbon fiber thermoplastics, in which density can be optimized to strike a balance between weight and strength to enhance performance in applications such as custom implants or aerospace structures. Although polymer powder bed fusion has long been capable of the combination of these geometries and materials, material extrusion with high-temperature sacrificial support is dramatically less expensive. This research provides a comprehensive mechanical analysis and CT-scan-based dimensional study of carbon fiber PEEK lattice structures enabled with high-temperature support and including model validation.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7688
Author(s):  
Kiyo T. Fujimoto ◽  
Lance A. Hone ◽  
Kory D. Manning ◽  
Robert D. Seifert ◽  
Kurt L. Davis ◽  
...  

Passive monitoring techniques have been used for peak temperature measurements during irradiation tests by exploiting the melting point of well-characterized materials. Recent efforts to expand the capabilities of such peak temperature detection instrumentation include the development and testing of additively manufactured (AM) melt wires. In an effort to demonstrate and benchmark the performance and reliability of AM melt wires, we conducted a study to compare prototypical standard melt wires to an AM melt wire capsule, composed of printed aluminum, zinc, and tin melt wires. The lowest melting-point material used was Sn, with a melting point of approximately 230 °C, Zn melts at approximately 420 °C, and the high melting-point material was aluminum, with an approximate melting point of 660 °C. Through differential scanning calorimetry and furnace testing we show that the performance of our AM melt wire capsule was consistent with that of the standard melt-wire capsule, highlighting a path towards miniaturized peak-temperature sensors for in-pile sensor applications.


2021 ◽  
Vol 64 (9) ◽  
pp. 679-684
Author(s):  
Yu. N. Saraev ◽  
V. Р. Bezborodov ◽  
М. V. Perovskaya ◽  
V. М. Semenchuk

The authors have studied the effect of alloying on the structure, microhardness and abrasive wear resistance of electroslag surfacing layers on low-alloy structural steel 09G2S. For modification, mixtures of Si3 N4   +  FeSi2   +  Si powders obtained in the Department of Structural Macrokinetics of  the Tomsk Scientific Centre SB RAS by the method of SHS synthesis, as well as powder compositions based on TiC, were used. A molten electrode was made of low-alloy steel St3, on which modifying compositions Si3 N4   +  FeSi2   +  Si were poured out, in the first case, and modifying compositions  Si3 N4   +  FeSi2   +  Si, located below, in the second case. Metallography and X-ray microanalysis methods were used to determine the structure and  to  analyze the composition of the deposited layers, heat-affected zone (HAZ) and the base metal, on the basis of which assumptions were made about  the nature of the formation of coating properties – hardness and wear resistance. It is shown that the main influence on the wear resistance is exerted  by structure of the surfacing metal. There is a positive effect of modifying coatings by alloying materials with the alloys Si3 N4   +  FeSi2   +  Si  +  St3  and TiC  +  St3. In the molten layer, many new crystallization centers are released in the form of dispersed TiC particles. Dispersed TiC particles with  a  high melting point (3180  °C) are the first to fall out of the melt and not only serve as multiple crystallization centers, but also prevent the growth of  austenitic grains, which ensures the formation of dispersed structure. The coatings contain TiC carbide particles, as well as inclusions of other phases. At the same time, an increase in hardness of the deposited layer containing titanium carbide inclusions is observed in direction of the boundary with the base. Wear resistance of the layer increases when a TiC-based coating is formed. The obtained data can be used to create deposited layers on the metal surface with high resistance against abrasive wear. 


2021 ◽  
Vol 22 (7) ◽  
Author(s):  
C. Lagan ◽  
J. E. Huckle ◽  
J. M. Katz ◽  
B. Khorsand ◽  
D. Daurio ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4982
Author(s):  
Wenjing Zhu ◽  
Wenling Fan ◽  
Xiaotong Zhang ◽  
Meiqi Gao

This study aimed to prepare a sustained-release solid dispersion of poorly water-soluble resveratrol (RES) with high melting point in a single hot melt extrusion step. A hydrophobic–hydrophilic polymeric blend (Eudragit RS and PEG6000) was used to control the release of RES. With the dispersive mixing and high shear forces of hot melt extrusion, the thermodynamic properties and dispersion of RES were changed to improve its solubility. The effects of the formulation were investigated through univariate analysis to optimize the preparation of the sustained-release solid dispersion. In vitro and in vivo studies were performed to evaluate the prepared RES/RS/PEG6000 sustained-release solid dispersion. The physical state of the solid dispersion was characterized using differential scanning calorimetry and X-ray diffraction. Surface properties of the dispersion were visualized using scanning electron microscopy, and the chemical interaction between RES and excipients was detected through Fourier-transform infrared spectroscopy. Results suggested that the optimized sustained-release solid dispersion was obtained when the mass ratio of RES-polymeric blend was 1:5, the ratio of PEG6000 was 35%, the barrel temperature was 170 °C, and the screw speed was 80 rpm. In vitro studies demonstrated that the solid dispersion showed a good sustained release effect. The cumulative release of RES reached 82.42% until 12 h and was fit by the Weibull model. In addition, the saturated solubility was 2.28 times higher than that of the bulk RES. In vitro studies demonstrated that the half-life increased from 3.78 to 7.09 h, and the bioavailability improved to 140.38%. The crystalline RES was transformed into the amorphous one, and RES was highly dispersed in the polymeric blend matrix.


Author(s):  
Ivan Putrantyo ◽  
Nikhit Anilbhai ◽  
Revati Vanjani ◽  
Brigita De Vega

Titanium (Ti) has been used in metallic implants since the 1950s due to various biocompatible and mechanical properties. However, due to its high Young’s modulus, it has been modified over the years in order to produce a better biomaterial. Tantalum (Ta) has recently emerged as a new potential biomaterial for bone and dental implants. It has been reported to have better corrosion resistance and osteo-regenerative properties as compared to Ti alloys which are most widely used in the bone-implant industry. Currently, Tantalum cannot be widely used yet due to its limited availability, high melting point, and high-cost production. This review paper discusses various manufacturing methods of Tantalum alloys, including conventional and additive manufacturing and also discusses their drawbacks and shortcomings. Recent research includes surface modification of various metals using Tantalum coatings in order to combine bulk material properties of different materials and the porous surface properties of Tantalum. Design modification also plays a crucial role in controlling bulk properties. The porous design does provide a lower density, wider surface area, and more immense specific strength. In addition to improved mechanical properties, a porous design could also escalate the material's biological and permeability properties. With current advancement in additive manufacturing technology, difficulties in processing Tantalum could be resolved. Therefore, Tantalum should be considered as a serious candidate material for future bone and dental implants.


Computation ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 87
Author(s):  
Mingguang Chen ◽  
Junzhu Li ◽  
Bo Tian ◽  
Yas Mohammed Al-Hadeethi ◽  
Bassim Arkook ◽  
...  

Interfacial thermal resistance (ITR) plays a critical role in the thermal properties of a variety of material systems. Accurate and reliable ITR prediction is vital in the structure design and thermal management of nanodevices, aircraft, buildings, etc. However, because ITR is affected by dozens of factors, traditional models have difficulty predicting it. To address this high-dimensional problem, we employ machine learning and deep learning algorithms in this work. First, exploratory data analysis and data visualization were performed on the raw data to obtain a comprehensive picture of the objects. Second, XGBoost was chosen to demonstrate the significance of various descriptors in ITR prediction. Following that, the top 20 descriptors with the highest importance scores were chosen except for fdensity, fmass, and smass, to build concise models based on XGBoost, Kernel Ridge Regression, and deep neural network algorithms. Finally, ensemble learning was used to combine all three models and predict high melting points, high ITR material systems for spacecraft, automotive, building insulation, etc. The predicted ITR of the Pb/diamond high melting point material system was consistent with the experimental value reported in the literature, while the other predicted material systems provide valuable guidelines for experimentalists and engineers searching for high melting point, high ITR material systems.


Sign in / Sign up

Export Citation Format

Share Document