tissue models
Recently Published Documents


TOTAL DOCUMENTS

566
(FIVE YEARS 180)

H-INDEX

43
(FIVE YEARS 7)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 141
Author(s):  
Zeina Maan ◽  
Nadia Z. Masri ◽  
Stephanie M. Willerth

3D bioprinting has tremendous potential to revolutionize the field of regenerative medicine by automating the process of tissue engineering. A significant number of new and advanced bioprinting technologies have been developed in recent years, enabling the generation of increasingly accurate models of human tissues both in the healthy and diseased state. Accordingly, this technology has generated a demand for smart bioinks that can enable the rapid and efficient generation of human bioprinted tissues that accurately recapitulate the properties of the same tissue found in vivo. Here, we define smart bioinks as those that provide controlled release of factors in response to stimuli or combine multiple materials to yield novel properties for the bioprinting of human tissues. This perspective piece reviews the existing literature and examines the potential for the incorporation of micro and nanotechnologies into bioinks to enhance their properties. It also discusses avenues for future work in this cutting-edge field.


2022 ◽  
pp. 2109823
Author(s):  
Alessandro Enrico ◽  
Dimitrios Voulgaris ◽  
Rebecca Östmans ◽  
Naveen Sundaravadivel ◽  
Lucille Moutaux ◽  
...  

Author(s):  
Yi Xiang ◽  
Kathleen Miller ◽  
Jiaao Guan ◽  
Wisarut Kiratitanaporn ◽  
Min Tang ◽  
...  

AbstractThe pharmacology and toxicology of a broad variety of therapies and chemicals have significantly improved with the aid of the increasing in vitro models of complex human tissues. Offering versatile and precise control over the cell population, extracellular matrix (ECM) deposition, dynamic microenvironment, and sophisticated microarchitecture, which is desired for the in vitro modeling of complex tissues, 3D bio-printing is a rapidly growing technology to be employed in the field. In this review, we will discuss the recent advancement of printing techniques and bio-ink sources, which have been spurred on by the increasing demand for modeling tactics and have facilitated the development of the refined tissue models as well as the modeling strategies, followed by a state-of-the-art update on the specialized work on cancer, heart, muscle and liver. In the end, the toxicological modeling strategies, substantial challenges, and future perspectives for 3D printed tissue models were explored.


2022 ◽  
Author(s):  
Alp Ozgun ◽  
David Lomboni ◽  
Hallie Arnott ◽  
William A. Staines ◽  
John Woulfe ◽  
...  

This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of 3D neural tissue models.


2022 ◽  
Vol 74 (1) ◽  
pp. 141-206
Author(s):  
Sonia Youhanna ◽  
Aurino M. Kemas ◽  
Lena Preiss ◽  
Yitian Zhou ◽  
Joanne X. Shen ◽  
...  

2022 ◽  
pp. 114111
Author(s):  
Jennifer H. Hammel ◽  
Jonathan M. Zatorski ◽  
Sophie R. Cook ◽  
Rebecca R. Pompano ◽  
Jennifer M. Munson

2021 ◽  
Author(s):  
Louise Breideband ◽  
Kaja Nicole Wächtershäuser ◽  
Levin Hafa ◽  
Konstantin Wieland ◽  
Achilleas Frangakis ◽  
...  

A widespread application of three-dimensional (3D) bioprinting in basic and translational research requires the accessibility to affordable printers able to produce physiologically relevant tissue models. To facilitate the use of bioprinting as a standard technique in biology, an open-source device based on a consumer-grade 3D stereolithographic (SL) printer was developed. This SL bioprinter can produce complex constructs that preserve cell viability and recapitulate the physiology of tissues. The detailed documentation of the modifications apported to the printer as well as a throughout performance analysis allow for a straightforward adoption of the device in other labs and its customization for specific applications. Given the low cost, several modified bioprinters could be simultaneously operated for a highly parallelized tissue production. To showcase the capability of the bioprinter, we produced constructs consisting of patient-derived cholangiocarcinoma organoids encapsulated in a gelatin methacrylate (GelMA)/polyethylene glycol diacrylate (PEGDA) hydrogel. A thorough characterization of different GelMA/PEGDA ratios revealed that the mechanical properties of the bioprinted tumor model can be accurately fine-tuned to mimic a specific tumor micro-environment. Immunofluorescence and gene expression analyses of tumor markers confirmed that the bioprinted synthetic hydrogel provides a flexible and adequate replacement of animal-derived reconstituted extracellular matrix.


Author(s):  
Rinu Sivarajan ◽  
David Komla Kessie ◽  
Heike Oberwinkler ◽  
Niklas Pallmann ◽  
Thorsten Walles ◽  
...  

To study the interaction of human pathogens with their host target structures, human tissue models based on primary cells are considered suitable. Complex tissue models of the human airways have been used as infection models for various viral and bacterial pathogens. The Gram-negative bacterium Bordetella pertussis is of relevant clinical interest since whooping cough has developed into a resurgent infectious disease. In the present study, we created three-dimensional tissue models of the human ciliated nasal and tracheo-bronchial mucosa. We compared the innate immune response of these models towards the B. pertussis virulence factor adenylate cyclase toxin (CyaA) and its enzymatically inactive but fully pore-forming toxoid CyaA-AC-. Applying molecular biological, histological, and microbiological assays, we found that 1 µg/ml CyaA elevated the intracellular cAMP level but did not disturb the epithelial barrier integrity of nasal and tracheo-bronchial airway mucosa tissue models. Interestingly, CyaA significantly increased interleukin 6, interleukin 8, and human beta defensin 2 secretion in nasal tissue models, whereas tracheo-bronchial tissue models were not significantly affected compared to the controls. Subsequently, we investigated the interaction of B. pertussis with both differentiated primary nasal and tracheo-bronchial tissue models and demonstrated bacterial adherence and invasion without observing host cell type-specific significant differences. Even though the nasal and the tracheo-bronchial mucosa appear similar from a histological perspective, they are differentially susceptible to B. pertussis CyaA in vitro. Our finding that nasal tissue models showed an increased innate immune response towards the B. pertussis virulence factor CyaA compared to tracheo-bronchial tissue models may reflect the key role of the nasal airway mucosa as the first line of defense against airborne pathogens.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 708
Author(s):  
Qiqi Gao ◽  
Byoung-Soo Kim ◽  
Ge Gao

Alginate is a natural polysaccharide that typically originates from various species of algae. Due to its low cost, good biocompatibility, and rapid ionic gelation, the alginate hydrogel has become a good option of bioink source for 3D bioprinting. However, the lack of cell adhesive moieties, erratic biodegradability, and poor printability are the critical limitations of alginate hydrogel bioink. This review discusses the pivotal properties of alginate hydrogel as a bioink for 3D bioprinting technologies. Afterward, a variety of advanced material formulations and biofabrication strategies that have recently been developed to overcome the drawbacks of alginate hydrogel bioink will be focused on. In addition, the applications of these advanced solutions for 3D bioprinting of tissue/organ mimicries such as regenerative implants and in vitro tissue models using alginate-based bioink will be systematically summarized.


Sign in / Sign up

Export Citation Format

Share Document