mineral association
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 43)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 82 (3) ◽  
pp. 70-72
Author(s):  
Rossitsa D. Vassileva ◽  
Georgi Milenkov ◽  
Sylvina Georgieva ◽  
Elitsa Stefanova

Chlorites are common constituent of the secondary mineral assemblage formed as alteration products after aluminosilicate host rocks in the Pb-Zn deposits in Madan district. In concordant pegmatite body from the Petrovitsa deposit, they are formed after mica flakes. Such transformation often results in abundant rutile grains. The dominant chlorite compositions fall in the clinochlore-chamosite series. Minor and trace elements incorporation of Li, B, V, Co, Ni, Zn, Ga, Rb, Sr, Cs, and Ba is detected. Calculated To of formation ranges within 298–306 °C.


Author(s):  
Elisa Laita ◽  
Blanca Bauluz ◽  
Marcos Aurell ◽  
Beatriz Bádenas ◽  
Alfonso Yuste

AbstractThe facies and clay mineral study of clay/marl-rich levels from the Torrelapaja Formation (latest Hauterivian–early Barremian, NW Iberian Range, NE Spain) allowed to establish the palaeoclimatic and palaeoenvironmental conditions under they were generated. The muddy levels and pisoids contained therein of two logs were sampled and studied by X-ray diffraction and optical and electron microscopy. A similar mineralogical upwards trend is recorded in both logs, with a decrease in calcite coupled with an increase in quartz and orthoclase content and constant proportions in goethite, hematite, diaspore, anatase, rutile, ilmenite, and clay mineral content. The lower muddy levels have higher kaolinite content than the upper levels, where illitic phases are the dominant clay minerals. Smectite and intergrowths of illitic phases and kaolinite are also detected upwards. The kaolinite and smectite textures indicate an authigenic origin, whereas the illitic phases are former phases acting as a substrate for kaolinite crystallization. Pisoids mineralogy and texture show an in-situ origin, but some are fractured, indicating reworking processes. The mineral association found in the muddy levels is characteristic of oxisols formed under warm and humid conditions. The upward decrease in kaolinite content is coeval with an increase in the illitic phases and quartz content, related to siliciclastic input, but is also coeval with the presence of authigenic smectite. This indicates a decrease in chemical weathering, not fully registered due to the siliciclastic contribution, which was possibly associated with a change to colder, drier conditions during the latest Hauterivian–early Barremian in the studied area.


2021 ◽  
Vol 30 (3) ◽  
pp. 528-538
Author(s):  
Mamoy I. Mansurov ◽  
Ulker I. Kerimli ◽  
Azer I. Guseynov

We studied the structural-morphological types and mineral composition of ore bodies, stages of ore development and conditions of development of the deposits. The research revealed significant elements of the corresponding conditions of localization of gold-polymetallic mineralization, the most characteristic being albitophyre subvolcanic bodies and steeply-dipping damages related to them. According to the structural-morphologic peculiarities, the ore bodies should be united under three categories: 1) simple vein; 2) complex vein; 3) veinlet-impregnation types. The positions of gold ore bodies and their morphological peculiarities were found to be determined by structural factors. Presence of small ruptures, differently-oriented systems of fractures and faults, which run across the area, gentle curves of these systems and other structural elements –all of this promotes gold ore development. There research determined aureoles of ore-containing altered rocks (serialization, chloritization, kaolization and calcinations, and limonitization from hypergenical zones) and presence of zonal structure. Gold-productive areas were identified as the quartz-pyrite association with disperse gold, and especially, the second mineral association where there is a notable close paragenetic connection between noticeable gold and chalcopyrite-galena parageneis of polymetallic stage. In the process of ore development, the physical-chemical conditions have presumably changed from average deep (quartz-pyrite-sericite) to shallow (quartz-galena- sphalerite-gold ore) and close-to-the-surface (quartz-chalcocite-hematite). Gold that occurs with all the mentioned minerals of this stage has developed in the temperature interval of 220–160 °C. The study found the ores to be complex, containing the following dditional elements: Fe, Cu, S, Bi, Zn, Pb, As, Se, Te. The main fossil component is gold. Industrially valuable are also cadmium, zink, copper and silver, found in the ores. We found the following morphological types of grains of native gold: homogenous, zonal, mono-granular, spotted, which are of great significance for concluding on genesis of the deposits, prognoses, explorations and assessments.


2021 ◽  
Vol 33 (4) ◽  
pp. 433-445
Author(s):  
Marko Bermanec ◽  
Nikita V. Chukanov ◽  
Ivan Boev ◽  
Božidar Darko Šturman ◽  
Vladimir Zebec ◽  
...  

Abstract. Among numerous minerals determined at Nežilovo, Pelagonian Massif, North Macedonia, ardennite-(As) has been discovered in two different associations and studied by means of optical microscopy, electron microprobe analysis (EMPA), and single-crystal and powder X-ray diffraction methods. The refractive indices of ardennite-(As) from Nežilovo are α=1.537(2), β=1.579(1) and γ=1.741(1), where γ corresponds to the c direction. The optical axial angle is 2Vx=49(1)∘. EMPA of the investigated samples yields the following empirical formulae: [Mn3.272+Ca0.73]Σ4.00[Al4.18Mg1.24Fe0.29Mn0.193+Zn0.10]Σ6.00(Si4.73Al0.27)Σ5.00(As0.96Si0.03V0.01)Σ1.00O22 [OH5.36(H2O)0.64]Σ6.00 for ardennite-(As) and (K0.95Na0.04Ba0.02)Σ1.01(Al1.44Fe0.303+Mg0.20Mn0.03Ti0.02 Zn0.01)Σ2.00(Si3.21Al0.79O10) (OH1.97O0.03)Σ2.00 for the associated red mica. The unit cell parameters of ardennite-(As) determined by X-ray powder diffraction are a=8.757(2) Å, b=5.836(2) Å, c=18.578(2) Å and V=941.97 Å3. The unit cell parameters of ardennite-(As) were also determined by single-crystal X-ray diffraction and are a=8.760(1) Å, b=5.838(1) Å, c=18.582(2) Å and V=950.30 Å3. Regularities of isomorphism in ardennite-related minerals are discussed. The presence of ardennite-(As) in association with 2M1 and 3T phengite polytypes provides evidence for three separate stages of formation. Conditions at which ardennite-(As) crystallized have been estimated based on compositional features of associated micas.


2021 ◽  
Vol 62 (2) ◽  
pp. 25-34
Author(s):  
Hung The Khuong ◽  

One of the most important achievements of applying radioactive isotope in the geological study is to determine the age of mineralization. Based on the synthesis, comparison, and evaluation of the popular isotopic systems in dating mineralization, the Rb - Sr, Re - Os, and Ar - Ar dating methods are discussed in this study. The results show that the Rb - Sr dating method is likely to be successfully applied to sulfide mineralization. If the mineralization contains little or no sulfide minerals, then the method is applied to other minerals in an ore mineral association. The Re - Os dating method has shown great success when it is applied to hydrothermal deposits, especially for the molybdenite - bearing vein deposits. The limitation of the method is that when the concentration of the Os element in molybdenite is low, it is difficult to establish the Re/Os ratio in a single mineral. The Ar - Ar isotope system for dating mineralization often uses mica or feldspar minerals, which are minerals with blocking temperatures ranging from 150÷350 0C, and later metamorphic periods have higher than 350 0C often overprinted these minerals. Generally, tectonic, magmatic, and metamorphic events, which occur after mineralization, can cause difficulty in determining the age of mineralization and collecting analysis samples.


2021 ◽  
Author(s):  
Rose Abramoff ◽  
Bertrand Guenet ◽  
Haicheng Zhang ◽  
Katerina Georgiou ◽  
Xiaofeng Xu ◽  
...  

<p>Soil carbon (C) models are used to predict C sequestration responses to climate and land use change. Yet, the soil models embedded in Earth system models typically do not represent processes that reflect our current understanding of soil C cycling, such as microbial decomposition, mineral association, and aggregation. Rather, they rely on conceptual pools with turnover times that are fit to bulk C stocks and/or fluxes. As measurements of soil fractions become increasingly available, soil C models that represent these measurable quantities can be evaluated more accurately. Here we present Version 2 (V2) of the Millennial model, a soil model developed to simulate C pools that can be measured by extraction or fractionation, including particulate organic C, mineral-associated organic C, aggregate C, microbial biomass, and dissolved organic C. Model processes have been updated to reflect the current understanding of mineral-association, temperature sensitivity and reaction kinetics, and different model structures were tested within an open-source framework. We evaluated the ability of Millennial V2 to simulate total soil organic C (SOC), as well as the mineral-associated and particulate fractions, using three soil fractionation data sets spanning a range of climate and geochemistry in Australia (N=495), Europe (N=176), and across the globe (N=730). Millennial V2 (RMSE = 1.98 – 4.76 kg, AIC = 597 – 1755) generally predicts SOC content better than the widely-used Century model (RMSE = 2.23 – 4.8 kg, AIC = 584 – 2271), despite an increase in process complexity and number of parameters. Millennial V2 reproduces between-site variation in SOC across a gradient of plant productivity, and predicts SOC turnover times similar to those of a global meta-analysis. Millennial V2 updates the conceptual Century model pools and processes and represents our current understanding of the roles that microbial activity, mineral association and aggregation play in soil C sequestration.</p>


2021 ◽  
Author(s):  
Mike C. Rowley ◽  
Stephanie Grand ◽  
Jorge E. Spangenberg ◽  
Eric P. Verrecchia

AbstractGeochemical indicators are emerging as important predictors of soil organic carbon (SOC) dynamics, but evidence concerning the role of calcium (Ca) is scarce. This study investigates the role of Ca prevalence in SOC accumulation by comparing otherwise similar sites with (CaCO3-bearing) or without carbonates (CaCO3-free). We measured the SOC content and indicators of organic matter quality (C stable isotope composition, expressed as δ13C values, and thermal stability) in bulk soil samples. We then used sequential sonication and density fractionation (DF) to separate two occluded pools from free and mineral-associated SOC. The SOC content, mass, and δ13C values were determined in all the fractions. X-ray photoelectron spectroscopy was used to investigate the surface chemistry of selected fractions. Our hypothesis was that occlusion would be more prevalent at the CaCO3-bearing site due to the influence of Ca on aggregation, inhibiting oxidative transformation, and preserving lower δ13C values. Bulk SOC content was twice as high in the CaCO3-bearing profiles, which also had lower bulk δ13C values, and more occluded SOC. Yet, contrary to our hypothesis, occlusion only accounted for a small proportion of total SOC (< 10%). Instead, it was the heavy fraction (HF), containing mineral-associated organic C, which accounted for the majority of total SOC and for the lower bulk δ13C values. Overall, an increased Ca prevalence was associated with a near-doubling of mineral-associated SOC content. Future investigations should now aim to isolate Ca-mediated complexation processes that increase organo-mineral association and preserve organic matter with lower δ13C values.


Sign in / Sign up

Export Citation Format

Share Document