intracellular protein
Recently Published Documents


TOTAL DOCUMENTS

857
(FIVE YEARS 155)

H-INDEX

72
(FIVE YEARS 8)

Author(s):  
yage xing ◽  
Jing Tang ◽  
Xuanlin Li ◽  
Ruihan Huang ◽  
Lin Wu ◽  
...  

This study investigated the ultraviolet (UV) light-induced effect of chitosan-titanium dioxide-silver (CTS-TiO2-Ag) nanocomposite film solution against Penicillium steckii ( ( P. steckii ) , as well as the underlying the physiological mechanism. The results indicated that the longer the UV exposure time, the better the pathogenic inhibition effect. After UV photoinduced treatment for 120 min, the colony diameter of P. steckii was the smallest at 4.85 mm. However, when this process is followed by an 8-h storage period, the conductivity of the P. steckii culture medium reached its highest level at 713 μs/cm. After a 120 h growth period in the same conditions, the lesion diameters and pathogenicity of the mangoes reached 12.61 mm and 41.67%, respectively. Since the cell membrane was severely disrupted, its permeability increased, causing serious intracellular protein and nucleic acid material extravasation. Furthermore, the malondialdehyde (MDA) , catalase (CAT) and superoxide dismutase (SOD) in the   P. steckii reached maximum levels after 8 h of incubation, at 2.1106 μmol/mL, 44.06 U/mL, and 24.67 U/mL respectively. These results indicated significant P. steckii inhibition via the UV light induction of the CTS-TiO 2 -Ag composite film solution.


2022 ◽  
Author(s):  
Patrick Renner ◽  
Michale Crone ◽  
Matthew Kornas ◽  
KimAnh Trang Pioli ◽  
Peter Dion Pioli

Antibody-secreting cells are terminally differentiated B cells that play a critical role in humoral immunity through immunoglobulin secretion along with possessing the potential to be long-lived. It is now appreciated that antibody-secreting cells regulate multiple aspects of biology through the secretion of various cytokines. In this regard, intracellular flow cytometry is a key tool used to assess the presence of intracellular proteins such as cytokines and transcription factors. Here, we showed that the use of phycoerythrin-containing antibody conjugates led to a false interpretation of antibody-secreting cell intracellular protein expression compared to other cell types. This was mainly due to the inappropriate retention of these antibodies specifically within antibody-secreting cells. Furthermore, we demonstrated how to reduce this retention which allowed for a more accurate comparison of intracellular protein expression between antibody-secreting cells and other cell types such as B lymphocytes. Using this methodology, our data revealed that spleen antibody-secreting cells expressed Toll-like receptor 7 as well as the pro-form of the inflammatory cytokine interleukin-1β.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 236
Author(s):  
Evelien G. G. Sprenkeler ◽  
Judith Zandstra ◽  
Nadine D. van Kleef ◽  
Ines Goetschalckx ◽  
Bibian Verstegen ◽  
...  

Neutrophils are the most abundant innate immune cells in the circulation and they are the first cells recruited to sites of infection or inflammation. Almost half of the intracellular protein content in neutrophils consists of S100A8 and S100A9, though there has been controversy about their actual localization. Once released extracellularly, these proteins are thought to act as damage-associated molecular patterns (DAMPs), though their mechanism of action is not well understood. These S100 proteins mainly form heterodimers (S100A8/A9, also known as calprotectin) and this heterocomplex is recognized as a useful biomarker for several inflammatory diseases. We observed that S100A8/A9 is highly present in the cytoplasmic fraction of neutrophils and is not part of the granule content. Furthermore, we found that S100A8/A9 was not released in parallel with granular content but upon the formation of neutrophil extracellular traps (NETs). Accordingly, neutrophils of patients with chronic granulomatous disease, who are deficient in phorbol 12-myristate 13-acetate (PMA)-induced NETosis, did not release S100A8/A9 upon PMA stimulation. Moreover, we purified S100A8/A9 from the cytoplasmic fraction of neutrophils and found that S100A8/A9 could induce neutrophil activation, including adhesion and CD11b upregulation, indicating that this DAMP might amplify neutrophil activation.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3532
Author(s):  
Jordan E. Hollembeak ◽  
Michael A. Model

Cell volume (CV) regulation is typically studied in short-term experiments to avoid complications resulting from cell growth and division. By combining quantitative phase imaging (by transport-of-intensity equation) with CV measurements (by the exclusion of an external absorbing dye), we were able to monitor the intracellular protein concentration (PC) in HeLa and 3T3 cells for up to 48 h. Long-term PC remained stable in solutions with osmolarities ranging from one-third to almost twice the normal. When cells were subjected to extreme hypoosmolarity (one-quarter of normal), their PC did not decrease as one might expect, but increased; a similar dehydration response was observed at high concentrations of ionophore gramicidin. Highly dilute media, or even moderately dilute in the presence of cytochalasin, caused segregation of water into large protein-free vacuoles, while the surrounding cytoplasm remained at normal density. These results suggest that: (1) dehydration is a standard cellular response to severe stress; (2) the cytoplasm resists prolonged dilution. In an attempt to investigate the mechanism behind the homeostasis of PC, we tested the inhibitors of the protein kinase complex mTOR and the volume-regulated anion channels (VRAC). The initial results did not fully elucidate whether these elements are directly involved in PC maintenance.


2021 ◽  
Vol 28 ◽  
Author(s):  
Penggang Han ◽  
Shangyi Liu ◽  
Xiandong Dai ◽  
Chongxu Fan ◽  
Ying Cao ◽  
...  

Background: Contryphan-Bt is a D-tryptophan-containing disulfide-constrained decapeptide recently isolated from the venom of Conus betulinus. The molecular targets of contryphans are controversial, and the identification of its interacting proteins may be of great importance. Methods: His-tag pull-down assays were performed to investigate intracellular binding proteins of contryphan-Bt from rat brain lysate. Bt-Acp-[His]6, a contryphan-Bt derivative containing hexahistidine tag, was synthesized and used as the bait. As a control, Acp-[His]6 was used to exclude nonspecific bindings. Results: Glutamine synthetase was identified as a potential contryphan-Bt binding protein by pull-down assays and subsequent LC-MS/MS. The binding of contryphan-Bt to glutamine synthetase was confirmed and determined using microscale thermophoresis, with a Kd of 74.02 ± 2.8 μM. The binding did not affect glutamine synthetase activity, suggesting that the interaction site was distinct from the catalytic center. Conclusions: Glutamine synthetase was identified as a novel contryphan-Bt binding protein. This is the first report in which the conopeptide binds to an intracellular protein.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010058
Author(s):  
Hao Zhang ◽  
Gang Lin

Proteasomes are compartmentalized, ATP-dependent, N-terminal nucleophile hydrolases that play essentials roles in intracellular protein turnover. They are present in all 3 kingdoms. Pharmacological inhibition of proteasomes is detrimental to cell viability. Proteasome inhibitor rugs revolutionize the treatment of multiple myeloma. Proteasomes in pathogenic microbes such as Mycobacterium tuberculosis (Mtb), Plasmodium falciparum (Pf), and other parasites and worms have been validated as therapeutic targets. Starting with Mtb proteasome, efforts in developing inhibitors selective for microbial proteasomes have made great progress lately. In this review, we describe the strategies and pharmacophores that have been used in developing proteasome inhibitors with potency and selectivity that spare human proteasomes and highlight the development of clinical proteasome inhibitor candidates for treatment of leishmaniasis and Chagas disease. Finally, we discuss the future challenges and therapeutical potentials of the microbial proteasome inhibitors.


2021 ◽  
Vol 22 (23) ◽  
pp. 13023
Author(s):  
Åke Lundwall ◽  
Erik Bovinder Ylitalo ◽  
Pernilla Wikström ◽  
Maria Brattsand

The human kallikrein-related peptidase 4 (KLK4) and the transcribed pseudogene KLKP1 are reported to be highly expressed in the prostate. When trying to clone transcripts of KLKP1, we partly failed. Instead, we identified an androgen-regulated transcript, KLK4T2, which appeared to be a splice variant of KLK4 that also contained exons of KLKP1. Expression analysis of KLK4, KLK4T2, and KLKP1 transcripts in prostate cancer cell lines showed high levels of KLKP1 transcripts in the nucleus and in unfractionated cell extract, whereas it was almost completely absent in the cytoplasmatic fraction. This was in contrast to KLK4 and KLK4T2, which displayed high to moderate levels in the cytoplasm. In patient cohorts we found significantly higher expression of both KLK4T2 and KLK4 in benign prostatic hyperplasia compared to both primary prostate cancer and bone metastasis. Analysis of tissue panels demonstrated the highest expression of KLK4T2 in the prostate, but in contrast to the classical KLK4, relatively high levels were also found in placenta. So far, the function of KLK4T2 is still to be explored, but the structure of the translation product indicated that it generates a 17.4 kDa intracellular protein with possible regulatory function.


2021 ◽  
Vol 34 (x) ◽  
pp. 1
Author(s):  
Shuhei Murayama ◽  
Noriaki Kono ◽  
Takashi Takaki ◽  
Masaru Kato

Sign in / Sign up

Export Citation Format

Share Document