polymeric carrier
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Rizka Yulina ◽  
Irene Bonadies ◽  
Giovanni Dal Poggetto ◽  
Paola Laurienzo

2021 ◽  
Vol 22 (23) ◽  
pp. 13050
Author(s):  
Tamer M. Tamer ◽  
Mosa H. Alsehli ◽  
Ahmed M. Omer ◽  
Tarek H. Afifi ◽  
Maysa M. Sabet ◽  
...  

The predominant impediments to cutaneous wound regeneration are hemorrhage and bacterial infections that lead to extensive inflammation with lethal impact. We thus developed a series of composite sponges based on polyvinyl alcohol (PVA) inspired by marjoram essential oil and kaolin (PVA/marjoram/kaolin), adopting a freeze–thaw method to treat irregular wounds by thwarting lethal bleeding and microbial infections. Microstructure analyses manifested three-dimensional interconnected porous structures for PVA/marjoram/kaolin. Additionally, upon increasing marjoram and kaolin concentrations, the pore diameters of the sponges significantly increased, recording a maximum of 34 ± 5.8 µm for PVA-M0.5-K0.1. Moreover, the porosity and degradation properties of PVA/marjoram/kaolin sponges were markedly enhanced compared with the PVA sponge with high swelling capacity. Furthermore, the PVA/marjoram/kaolin sponges exerted exceptional antibacterial performance against Escherichia coli and Bacillus cereus, along with remarkable antioxidant properties. Moreover, PVA/marjoram/kaolin sponges demonstrated significant thrombogenicity, developing high thrombus mass and hemocompatibility, in addition to their remarkable safety toward fibroblast cells. Notably, this is the first study to our knowledge investigating the effectiveness of marjoram in a polymeric carrier for prospective functioning as a wound dressing. Collectively, the findings suggest the prospective usage of the PVA-M0.5-K0.1 sponge in wound healing for hemorrhage and bacterial infection control.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anurag Verma ◽  
Pradeep Kumar ◽  
Vaibhav Rastogi ◽  
Piyush Mittal

Abstract Background An enteric coating is a multistep technique that involves deposition of a polymeric barrier over uncoated orally administered tablets to prevent them from dissolving or disintegrating in the stomach. However, as soon as the coating dissolves in the alkaline environment of intestine, the whole of the drug come in direct contact with gastric mucosa leading to irritation to distal parts of the gastrointestinal tract (GIT). Considering the above facts, there is clear need to develop a simple and effective enteric release formulation for gastric irritant drugs like Diclofenac sodium (DS). The goal of this study was to create enteric release polymeric polyelectrolyte complex (PEC) beads made up of cationic Chitosan (CH) and anionic Gellan Gum (GG) for sustained DS delivery to the intestine. The beads were prepared by extruding a solution of GG and Gum Ghatti (GT) or GG and Gum Karaya (GK) bearing DS into CH solution in 1% w/v acetic acid, with the help of a syringe fitted with a 18 gauge hypodermic needle. Results Instantly created spherical beads were dried in a hot air oven 60 °C overnight. In 0.1 M HCl and 6.8 pH phosphate buffer, the dried beads were tested for drug entrapment in the beads, in vitro swelling of beads and in vitro drug release studies from the beads. The % drug entrapment efficiencies (% DEE) of these PEC beads ranged from 59.54 ± 2.09 to 81.03 ± 4.22%. In 0.1 M HCl, the PEC beads swelled the least in vitro, but expanded significantly in phosphate buffer (pH 6.8). The in vitro release of Diclofenac sodium from different PEC beads in 0.1 M HCl was found to be less than 7.5 percent, whereas the release was sustained for 6 h in phosphate buffer (pH 6.8). Conclusions From the experimental data, it may be concluded that these PEC beads can be useful as potential multiple-unit enteric release polymeric carrier systems for sustained delivery of gastric irritant drugs like Diclofenac sodium.


2021 ◽  
pp. 51612
Author(s):  
Swanya Yakaew ◽  
Kunlathida Luangpradikun ◽  
Preeyawass Phimnuan ◽  
Nitra Nuengchamnong ◽  
Nuntaporn Kamonsutthipaijit ◽  
...  

Small ◽  
2021 ◽  
pp. 2101180
Author(s):  
Chun Yang ◽  
Meihui Su ◽  
Pei Luo ◽  
Yanan Liu ◽  
Feng Yang ◽  
...  

Author(s):  
Evelin Sánta-Bell ◽  
Norbert Krisztián Kovács ◽  
Bálint Alács ◽  
Zsófia Molnár ◽  
Gábor Hornyánszky

Immobilized metal ion affinity chromatography principles were applied for selective immobilization of recombinant polyhistidine tag fused phenylalanine ammonia-lyase from parsley (PcPAL) on porous polymeric support with aminoalkyl moieties modified with an EDTA dianhydride (EDTADa)-derived chelator and charged with transition metal ions. Out of the five investigated metal ions - Fe3+, Co2+, Ni2+, Cu2+, Zn2+ - the best biocatalytic activity of PcPAL was achieved when the enzyme was immobilized on the Co2+ ion-charged support (31.8 ± 1.2 U/g). To explore the features this PcPAL obtained by selective immobilization, the thermostability and reusability of this PAL biocatalyst were investigated. To maximize the activity of the immobilized PcPAL the surface functionalization of the aminoalkylated polymeric carrier was fine-tuned with using glycidol as a thinning group beside EDTADa. The maximal activity yield (YA=103 %) was earned when the EDTADa and glycidol were used in 1 to 24 ratio. The reversibility of the immobilization method allowed the development of a support regeneration protocol which enables easy reuse of the functionalized support in case of enzyme inactivation.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Athira R. Nair ◽  
Yarlagadda Dani Lakshman ◽  
Vullendula Sai Krishna Anand ◽  
K. S. Navya Sree ◽  
Krishnamurthy Bhat ◽  
...  

AbstractSolid dispersion is the preferred technology to prepare efficacious forms of BCS class-II/IV APIs. To prepare solid dispersions, there exist a wide variety of polymeric carriers with interesting physicochemical and thermochemical characteristics available at the disposal of a formulation scientist. Since the advent of the solid dispersion technology in the early 1960s, there have been more than 5000 scientific papers published in the subject area. This review discusses the polymeric carrier properties of most extensively used polymers PVP, Copovidone, PEG, HPMC, HPMCAS, and Soluplus® in the solid dispersion technology. The literature trends about preparation techniques, dissolution, and stability improvement are analyzed from the Scopus® database to enable a formulator to make an informed choice of polymeric carrier. The stability and extent of dissolution improvement are largely dependent upon the type of polymeric carrier employed to formulate solid dispersions. With the increasing acceptance of transfer dissolution setup in the research community, it is required to evaluate the crystallization/precipitation inhibition potential of polymers under dynamic pH shift conditions. Further, there is a need to develop a regulatory framework which provides definition and complete classification along with necessarily recommended studies to characterize and evaluate solid dispersions.


Sign in / Sign up

Export Citation Format

Share Document