cardiac physiology
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 60)

H-INDEX

36
(FIVE YEARS 4)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Goran Bozinovic ◽  
Zuying Feng ◽  
Damian Shea ◽  
Marjorie F. Oleksiak

Abstract Background The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. Results Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. Conclusion Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries.


2022 ◽  
Vol 12 ◽  
Author(s):  
Annelene Govindsamy ◽  
Samira Ghoor ◽  
Marlon E. Cerf

Fetal programming refers to an intrauterine stimulus or insult that shapes growth, development and health outcomes. Dependent on the quality and quantity, dietary fats can be beneficial or detrimental for the growth of the fetus and can alter insulin signaling by regulating the expression of key factors. The effects of varying dietary fat content on the expression profiles of factors in the neonatal female and male rat heart were investigated and analyzed in control (10% fat), 20F (20% fat), 30F (30% fat) and 40F (40% fat which was a high fat diet used to induce high fat programming) neonatal rats. The whole neonatal heart was immunostained for insulin receptor, glucose transporter 4 (Glut4) and forkhead box protein 1 (FoxO1), followed by image analysis. The expression of 84 genes, commonly associated with the insulin signaling pathway, were then examined in 40F female and 40F male offspring. Maintenance on diets, varying in fat content during fetal life, altered the expression of cardiac factors, with changes induced from 20% fat in female neonates, but from 30% fat in male neonates. Further, CCAAT/enhancer-binding protein alpha (Cebpa) was upregulated in 40F female neonates. There was, however, differential expression of several insulin signaling genes in 40F (high fat programmed) offspring, with some tending to significance but most differences were in fold changes (≥1.5 fold). The increased immunoreactivity for insulin receptor, Glut4 and FoxO1 in 20F female and 30F male neonatal rats may reflect a compensatory response to programming to maintain cardiac physiology. Cebpa was upregulated in female offspring maintained on a high fat diet, with fold increases in other insulin signaling genes viz. Aebp1, Cfd (adipsin), Adra1d, Prkcg, Igfbp, Retn (resistin) and Ucp1. In female offspring maintained on a high fat diet, increased Cebpa gene expression (concomitant with fold increases in other insulin signaling genes) may reflect cardiac stress and an adaptative response to cardiac inflammation, stress and/or injury, after high fat programming. Diet and the sex are determinants of cardiac physiology and pathophysiology, reflecting divergent mechanisms that are sex-specific.


2022 ◽  
Vol 75 (2) ◽  
Author(s):  
Cláudia Gabrielle da Silva ◽  
Suelayne Santana de Araújo ◽  
Sheila Coelho Ramalho Vasconcelos Morais ◽  
Cecília Maria Farias de Queiroz Frazão

ABSTRACT Objective: To develop a middle range nursing theory of impaired knowledge in individuals with heart failure. Methods: Descriptive study of the cross type developed through the theoretical-causal validity method, which used six steps for theory building: Definition of the construction approach; Definition of theoretical-conceptual models; Definition of main concepts; Development of a pictorial scheme; Construction of propositions; and Establishment of causal relations and evidence for practice. Results: Twenty-four articles were found, which identified two attributes, eight antecedents, and seven consequences, which gave rise to the pictogram, which schematized the concepts by relating them to cardiac physiology. Finally, 11 propositions and four causal relationships were created. Conclusion: The constructed theory enables a targeted driving of nurses’ clinical judgment regarding impaired knowledge in individuals with heart failure, culminating in individualized interventions to improve quality of life.


Author(s):  
Upendra Chalise ◽  
Mediha Becirovic-Agic ◽  
Michael J Daseke II ◽  
Shelby R. Konfrst ◽  
Jocelyn R. Rodriguez-Paar ◽  
...  

Neutrophils infiltrate into the left ventricle (LV) early after myocardial infarction (MI) and launch a pro-inflammatory response. Along with neutrophil infiltration, LV wall thinning due to cardiomyocyte necrosis also peaks at day 1 in the mouse model of MI. To understand the correlation, we examined a previously published dataset that included day 0 (n=10) and MI day 1 (n=10) neutrophil proteome and echocardiography assessments. Out of 123 proteins, 4 proteins positively correlated with the infarct wall thinning index (1/wall thickness): histone 1.2 (r=0.62, p=0.004), S100A9 (r=0.60, p=0.005), histone 3.1 (r=0.55, p=0.01), and fibrinogen (r=0.47, p=0.04). As S100A9 was the highest ranked secreted protein, we hypothesized that S100A9 is a functional effector of infarct wall thinning. We exogenously administered S100A8/A9 at the time of MI to mice (C57BL/6J, male, 3-6 months of age, n=7M (D1), and n=5M (D3)) and compared to saline vehicle control treated mice (n=6M (D1) and n=6M (D3)) at MI days 1 and 3. At MI day 3, the S100A8/A9 group showed a 22% increase in the wall thinning index compared to saline (p=0.02), along with higher dilation and lower ejection fraction. The decline in cardiac physiology occurred subsequent to increased neutrophil and macrophage infiltration at MI day 1 and increased macrophage infiltration at D3. Our results reveal that S100A9 is a functional effector of infarct wall thinning.


2021 ◽  
Author(s):  
Celia Fernandez Sanz ◽  
Sergio De la Fuente Perez ◽  
Zuzana Nichtova ◽  
Yuexing Yuan ◽  
Sebastian Lanvermann ◽  
...  

Rationale: Mitochondrial fission and fusion are relatively infrequent in adult cardiomyocytes compared to other cell types. This is surprising considering that proteins involved in mitochondrial dynamics are highly expressed in the heart. It has been previously reported that dynamin related protein 1 (DRP1) has a critical role in mitochondrial fitness and cardiac protection. Cardiac DRP1 ablation in the adult heart evokes a progressive dilated cardiac myopathy and lethal heart failure. Nevertheless, the conditional cardiacspecific DRP1 knock out animals present a significantly longer survival rate compared with global DRP1 KO models. We have described before the great importance for cardiac physiology of the strategic positioning of mitochondrial proteins in the cardiac tissue. Therefore, we hypothesize that DRP1 plays a regulatory role in cardiac physiology and mitochondrial fitness by preferentially accumulating at mitochondria and junctional sarcoplasmic reticulum (jSR) contact sites, where the high Ca2+ microdomain is formed during excitation-contraction (EC) coupling. Objective: This study aims to determine whether mitochondria-associated DRP1 is preferentially accumulated in the mitochondria and jSR contact sites and if indeed this is the case, what is the mechanism responsible for such a biased distribution and what is the functional implication. Methods and Results: Using high-resolution imaging approaches, we found that mitochondria-associated DRP1 in cardiomyocytes was localized in the discrete regions where T-tubule, jSR, and mitochondria are adjacent to each other. Western blot results showed that mitochondria-bound DRP1 was restricted to the mitochondria-associated membranes (MAM), with undetectable levels in purified mitochondria. Furthermore, in comparison to the cytosolic DRP1, the membrane-bound DRP1 in SR and MAM fractions formed high molecular weight oligomers. In both electrically paced adult cardiomyocytes and Langendorff-perfused beating hearts, the oscillatory Ca2+ pulses preserved MAM-associated DRP1 accumulation. Interestingly, similar to DRP1, all mitochondria-bound βACTIN only exists in MAM and not in the purified mitochondria. Additionally, co-immunoprecipitation pulls down both DRP1 and βACTIN together. Inhibition of βACTIN polymerization with Cytochalasin D disrupts the tight association between DRP1 and βACTIN. In cardiac specific DRP1 knockout mouse after 6 weeks of tamoxifen induction the cardiomyocytes show disarray of sarcomere, a decrease of cardiac contraction, loss of mitochondrial membrane potential significantly decreased spare respiratory capacity, and frequent occurrence of earl after contraction, suggesting the heart is susceptible for failure and arrhythmias. Despite of this phenotype, DRP1icKo animal have a longer life spam than other DRP1 KO models. We also observed that DRP1icKO. Strikingly, DRP1 levels are is only modestly decreased in the MAM when compared with the rest of the cellular fractions. These preserved levels were accompanied with preservation of the mitochondrial pool in the MAM fraction obtained from the DRP1icKO hearts. Conclusions: The results show that in adult cardiomyocytes, mitochondria bound DRP1 clusters in high molecular weight protein complexes at MAM. This clustering is fortified by EC coupling mediated Ca2+ transients and requires its interaction with βACTIN. Together with the better preserved dRP1 levels in the DRP1icKO model in the MAM, we conclude that DRP1 is anchored in mitochondria-SR interface through βACTIN and position itself to play a fundamental role in regulating mitochondrial quality control in the working heart.


2021 ◽  
Vol 14 (12) ◽  
pp. e246333
Author(s):  
Manisha Gandhi ◽  
Honey Thomas

This case study provides an example of bradycardia associated with an increase in exercise training in a recreational athlete. Although recognised among high-level endurance athletes, this case demonstrates the potential negative effects of exercise on the heart in a patient participating in the levels of exercise recommended by Public Health England. It adds weight to the ongoing discussion of the incomplete understanding of the level of exercise needed to induce pathological changes in cardiac physiology. We discuss the investigations that led us to our diagnosis, highlighting the importance of a detailed exercise history in patients who present with palpitations and provide a potential explanation of how this phenomenon may have occurred. Currently, bradycardia induced by exercise has been managed through pacemaker insertion or complete cessation of exercise. This report demonstrates effective treatment through a period of exercise cessation and slow reintroduction of exercise training.


2021 ◽  
pp. 61-86
Author(s):  
Tania Zaglia ◽  
Loren J. Field
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manveen K. Gupta ◽  
Anita Sahu ◽  
Yu Sun ◽  
Maradumane L. Mohan ◽  
Avinash Kumar ◽  
...  

AbstractAlthough microRNA-7 (miRNA-7) is known to regulate proliferation of cancer cells by targeting Epidermal growth factor receptor (EGFR/ERBB) family, less is known about its role in cardiac physiology. Transgenic (Tg) mouse with cardiomyocyte-specific overexpression of miRNA-7 was generated to determine its role in cardiac physiology and pathology. Echocardiography on the miRNA-7 Tg mice showed cardiac dilation instead of age-associated physiological cardiac hypertrophy observed in non-Tg control mice. Subjecting miRNA-7 Tg mice to transverse aortic constriction (TAC) resulted in cardiac dilation associated with increased fibrosis bypassing the adaptive cardiac hypertrophic response to TAC. miRNA-7 expression in cardiomyocytes resulted in significant loss of ERBB2 expression with no changes in ERBB1 (EGFR). Cardiac proteomics in the miRNA-7 Tg mice showed significant reduction in mitochondrial membrane structural proteins compared to NTg reflecting role of miRNA-7 beyond the regulation of EGFR/ERRB in mediating cardiac dilation. Consistently, electron microscopy showed that miRNA-7 Tg hearts had disorganized rounded mitochondria that was associated with mitochondrial dysfunction. These findings show that expression of miRNA-7 in the cardiomyocytes results in cardiac dilation instead of adaptive hypertrophic response during aging or to TAC providing insights on yet to be understood role of miRNA-7 in cardiac function.


2021 ◽  
pp. 183-194
Author(s):  
Carlos Rodríguez-Abad ◽  
Carmen Fernández-de-la-Iglesia ◽  
Raquel Rodríguez-González ◽  
Alba-Elena Martínez-Santos

Sign in / Sign up

Export Citation Format

Share Document