coarse particles
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 106)

H-INDEX

49
(FIVE YEARS 5)

2022 ◽  
Vol 10 (1) ◽  
pp. 28-33
Author(s):  
M. Ranggawati ◽  
I. I. Arief ◽  
Z. Wulandari

Whey produced from cheese processing can be used as non-food products such as sunscreen by fermenting using Streptococcus thermophilus and Lactobacillus bulgaricus. Adding active ingredients such as red fruit oil which contains carotenoids can increase the effectiveness of sunscreen. This study aims to determine the formulation of fermented whey and red fruit oil usage in sunscreen. The study began with the production of fermented whey and sunscreen formulations with ratios of 0, 1:1, 1:2, and 2:1 (fermented whey: red fruit oil). Furthermore, observe the organoleptic, antioxidant, SPF, pH, and homogeneity value. Adding fermented whey and red fruit oil showed no significant effect (P>0.05) onthe organoleptic test of aroma, but significantly (P<0.05) on color and texture. The antioxidant activity value test showed significantly different results (P<0.05) with IC50 values classified as moderate to high.Determination of the SPF value of sunscreen showed significantly different results  (P<0.05), but this value was classified as low protection. Although there was no significant effect on pH testing (P>0.05), the pH of sunscreen cream indicated that it was suitable for topical application. All samples showed homogeneous results and there were no coarse particles or separation between the oil and water phases. The best sunscreen formulation is 1:1 cream with the highest SPF value of 6.86 and strong antioxidant activity with an IC50 value of 56.15 g/mL. Fermented whey and red fruit oil usage as active ingredients are more effective in increasing the protection of the cream against UV rays and free radicals.


Author(s):  
Karolina Bralewska ◽  
Wioletta Rogula-Kozłowska ◽  
Dominika Mucha ◽  
Artur Jerzy Badyda ◽  
Magdalena Kostrzon ◽  
...  

This study aimed to evaluate the mass concentration of size-resolved (PM1, PM2.5, PM4, PM10, PM100) particulate matter (PM) in the Wieliczka Salt Mine located in southern Poland, compare them with the concentrations of the same PM fractions in the atmospheric air, and estimate the dose of dry salt aerosol inhaled by the mine visitors. Measurements were conducted for 2 hours a day, simultaneously inside (tourist route, passage to the health resort, health resort) and outside the mine (duty-room), for three days in the summer of 2017 using DustTrak DRX devices (optical method). The highest average PM concentrations were recorded on the tourist route (54–81 µg/m3), while the lowest was in the passage to the health resort (49–62 µg/m3). At the same time, the mean outdoor PM concentrations were 14–20 µg/m3. Fine particles constituting the majority of PM mass (68–80%) in the mine originated from internal sources, while the presence of coarse particles was associated with tourist traffic. High PM deposition factors in the respiratory tract of children and adults estimated for particular mine chambers (0.58–0.70), the predominance of respirable particles in PM mass, and the high content of NaCl in PM composition indicate high health benefits for mine visitors.


Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 573-587
Author(s):  
Sin Mei Lim ◽  
Linqiao He ◽  
Siang Huat Goh ◽  
Fook Hou Lee

Although there has been a substantial body of research on the chemical stabilization of sewage sludge, most of these results are project-specific and relate mainly to the use of new binders and sewage sludge from specific sources. In this sense, much of the work to date is context-specific. At present, there is still no general framework for estimating the strength of the chemically treated sludge. This paper proposes one such general framework, based on data from some recent studies. An in-depth re-interpretation of the data is first conducted, leading to the observation that sludge, which has coarse, hard particulate inclusions, such as sand, premixed into it, gives significantly higher strength. This was attributed to the hard coarse particles that lower the void ratio of treated soil, are much less susceptible to volume collapse under pressure, and contribute to the strength through frictional contacts and interlocking. This motivates the postulation of a general framework, based on the premise that coarse, hard particulate inclusions in the sludge which do not react with the binders can nonetheless contribute to the strength of the treated soil. The overall void ratio, defined as the volume of voids in the cementitious matrix normalised by the overall volume, is proposed as a parameter for quantifying the combined effect of the coarse particulate inclusions and the cementitious matrix. The binder-sludge ratio is another parameter which quantifies the strength of the cementitious matrix, excluding the hard particulate inclusions. Back-analysis of the data suggests that the significance of the binder-sludge ratio may diminish as the content of hard particulate inclusions increases.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yuhao Gao ◽  
Jianzhong Li ◽  
Yuxin Zhang ◽  
Xu Sun ◽  
Leiyong Yang

The effectiveness and improvement mechanism of graphite nanoparticles (GN) in strength properties and microstructure characteristics of regional laterite were analysed in this study. Dry density was also taken into consideration, and the effects of graphite nanoparticle (GN) content and dry density were mainly addressed. Triaxial tests, consolidation tests, and penetration tests were used to analyse the effectiveness of different dry densities and graphite nanoparticle mass ratios on the properties of laterite; microscopic methods such as scanning electron microscopy (SEM) tests were used to analyse the improvement mechanism. The results show that the increase in dry density can make the laterite more compact. The large specific surface area and nanoeffects of the graphite nanoparticles (GN) induce the attraction between soil particles after mixing, both of which make the laterite’s shear strength; compression index and impermeability have been enhanced to varying degrees. The microscopic tests showed that, as the content of graphite nanoparticles (GN) continues to increase, when it exceeds 1.0%, the attraction between soil particles increases and coarse particles are formed, which leads to the increase of the pores of the soil. In addition, the graphite nanoparticles have a certain degree of lubricity, a high amount of graphite nanoparticles enters the laterite soil layer, increasing the distance and gap between the layers, making it easy to separate the coarse particles from the coarse particles, and the strength increase is reduced. However, it is still stronger than that of the plain laterite.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6602
Author(s):  
Alexander Pervikov ◽  
Nikita Toropkov ◽  
Sergey Kazantsev ◽  
Olga V. Bakina ◽  
Elena Glazkova ◽  
...  

Electrical explosion of aluminum wires has been shown to be a versatile method for the preparation of bimodal nano/micro powders. The energy input into the wire has been found to determine the relative content of fine and coarse particles in bimodal aluminum powders. The use of aluminum bimodal powders has been shown to be promising for the development of high flowability feedstocks for metal injection molding and material extrusion additive manufacturing.


2021 ◽  
Vol 920 (1) ◽  
pp. 012004
Author(s):  
H A Samad ◽  
R A Rashid ◽  
Z Zakaria

Abstract The purpose of this study was to characterize and investigate the performance of local marble quarry waste to assess its use as filler in producing artificial marble. Marble waste was obtained from marble quarry located in Simpang Pulai, Ipoh and sieved into two different sizes; < 2mm as coarse particle and < 250 μm as fine particle. The artificial marble was prepared under vacuum condition and the composition of fine and coarse particles were modified between 40-70% (wt.) and 0-30% (wt.), respectively. The artificial marble was evaluated their performance by water absorption, flexural strength, compression strength, and Barcol hardness properties. It was found that artificial marble prepared with 60% (wt.) of fine particle and 10% (wt.) of coarse particle showed the best overall properties leading to a lowest water absorption and good flexural and compression strength. However, modification of marble waste content in the composition of artificial marble showed insignificant influence on Barcol hardness properties.


2021 ◽  
Vol 21 (20) ◽  
pp. 16027-16050
Author(s):  
Minako Kurisu ◽  
Kohei Sakata ◽  
Mitsuo Uematsu ◽  
Akinori Ito ◽  
Yoshio Takahashi

Abstract. The source apportionment of aerosol iron (Fe), including natural and combustion Fe, is an important issue because aerosol Fe can enhance oceanic primary production in the surface ocean. Based on our previous finding that combustion Fe emitted by evaporation processes has Fe isotope ratios (δ56Fe) that are approximately 4 ‰ lower than those of natural Fe, this study aimed to distinguish aerosol Fe sources over the northwestern Pacific using two size-fractionated marine aerosols. The δ56Fe values of fine and coarse particles from the eastern or northern Pacific were found to be similar to each other, ranging from 0.0 ‰ to 0.4 ‰. Most of them were close to the crustal average, suggesting the dominance of natural Fe. On the other hand, particles from the direction of East Asia demonstrated lower δ56Fe values in fine particles (−0.5 ‰ to −2.2 ‰) than in coarse particles (on average −0.02 ± 0.12 ‰). The correlations between the δ56Fe values and the enrichment factors of lead and vanadium suggested that the low δ56Fe values obtained were due to the presence of combustion Fe. The δ56Fe values of the soluble component of fine particles in this region were lower than the total, indicating the preferential dissolution of combustion Fe. In addition, we found a negative correlation between the δ56Fe value and the fractional Fe solubility in air masses from the direction of East Asia. These results suggest that the presence of combustion Fe is an important factor in controlling the fractional Fe solubility in air masses from the direction of East Asia, whereas other factors are more important in the other areas. By assuming typical δ56Fe values for combustion and natural Fe, the contribution of combustion Fe to the total (acid-digested) Fe in aerosols was estimated to reach up to 50 % of fine and 21 % of bulk (coarse + fine) particles in air masses from the direction of East Asia, whereas its contribution was small in the other areas. The contribution of combustion Fe to the soluble Fe component estimated for one sample was approximately twice as large as the total, indicating the importance of combustion Fe as a soluble Fe source despite lower emissions than the natural. These isotope-based estimates were compared with those estimated using an atmospheric chemical transport model (IMPACT), in which the fractions of combustion Fe in fine particles, especially in air masses from the direction of East Asia, were consistent with each other. In contrast, the model estimated a relatively large contribution from combustion Fe in coarse particles, probably because of the different characteristics of combustion Fe that are included in the model calculation and the isotope-based estimation. This highlights the importance of observational data on δ56Fe for size-fractionated aerosols to scale the combustion Fe emission by the model. The average deposition fluxes of soluble Fe to the surface ocean were 1.4 and 2.9 nmol m−2 d−1 from combustion and natural aerosols, respectively, in air masses from the direction of East Asia, which suggests that combustion Fe could be an important Fe source to the surface seawater among other Fe sources. Distinguishing Fe sources using the δ56Fe values of marine aerosols and seawater is anticipated to lead to a more quantitative understanding of the Fe cycle in the atmosphere and surface ocean.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hao Jia ◽  
Yuqi Wang ◽  
Zuchao Zhu ◽  
Xianghui Su ◽  
Zhenji Tang

Along with the pressing demand for the long-distance transportation of coarse particles in the deep-sea mining industry, evaluating the slurry pump’s passing through and erosive wear by studying the particle motion characteristics and the slurry behavior is becoming increasingly important. Research on the influence of leakage flow through the clearance and balancing devices on the motion characteristic of granular grain flow is of great significance but has been seldom studied. This study coupled the discrete element method with the CFD method to investigate the comprehensive effect of a double-stage slurry pump’s main flow and leakage flow on the motion characteristics of particles with a 10 mm diameter. Results show that the leakage flow occupation in main flow falls from 26%–27% to 8%–9% for the two stages, with the flow rate increasing from 80 m3/h to 200 m3/h. In the first stage with leakage, accumulation of coarse particles was observed at the impeller eye, which should be paid much attention to slurry pumps’ operation to eliminate the chance of blockage. In the nonleak situation, although the increment of the average kinetic energy of particles through the impeller is more significant than in the leak case, most of them dissipate primarily by more than 10% collision in the bowl diffuser. In the leak or nonleak case, the average kinetic energy of particles was more than twice through the first stage but only 1.1 times through the second stage. The selection of stages in the slurry pump design should consider the limitation of particle velocity improvement.


Sign in / Sign up

Export Citation Format

Share Document