fire dynamic simulator
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 8)

H-INDEX

3
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Chenglong Xu ◽  
Zhi Liu

Increasing fire-induced bridge failures are demanding more precise behavior prediction for the bridges subjected to fires. However, current numerical methods are limited to temperature curves prescribed for building structures, which can misestimate the fire impact significantly. This paper developed a framework coupling the computational dynamics (CFD) method and finite element method (FEM) to predict the performance of fire-exposed bridges. The fire combustion was simulated in CFD software, Fire Dynamic Simulator, to calculate the thermal boundary required by the thermomechanical simulation. Then, the adiabatic surface temperatures and heat transfer coefficient were applied to the FEM model of the entire bridge girder. A sequential coupled thermomechanical FEM simulation was then carried out to evaluate the performance of the fire-exposed bridge, thermally and structurally. The methodology was then validated through a real fire experiment on a steel beam. The fire performance of a simply supported steel box bridge was simulated using the proposed coupled CFD-FEM methodology. Numerical results show that the presented method was able to replicate the inhomogeneous thermomechanical response of box bridges exposed to real fires. The girder failed due to the buckling of a central diaphragm after the ignition of the investigated tanker fire in no more than 10 min. The framework presented in this study is programmatic and friendly to researchers and can be applied for the estimation of bridges in different fire conditions.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2392
Author(s):  
Razieh Khaksari ◽  
Zambri Harun ◽  
Les Fielding ◽  
John Aldridge

The purpose of this numerical research is to assess the evacuation process in a tunnel under the contraflow condition. Numerical simulations utilizing FDS+Evac codes associated with a fire dynamic simulator (FDS) model simulating a fire scenario are used to simulate evacuation and to predict the impact of a 100 MW fire scenario on the occupants inside the tunnel. Traffic and passenger conditions are based on real data from a tunnel in the UK. Two fire loads, 100 MW and 5 MW, are studied to represent an HGV and a passenger car fire. The 100 MW fire source, caused by an unexpected heavy good vehicle (HGV) catching fire, is located in the middle of the tunnel and at 20% of tunnel length to study the effect of fire source location on the usage of emergency exits and tenability thresholds. The dimensions and the inclination angle of the existing roadway tunnel are 1836 m (L) × 7.3 m (W) × 5 m (H) and 4%, respectively. It should be noted that the 4% inclination of the tunnel causes asymmetry propagation of smokes thus the visibility of the downstream and upstream from the fire behave differently. The maximum needed time to evacuate using all egress, the amount of fractional effective dose and visibility at the human’s height are analyzed. Simulation results indicate that when a realistic worst-case fire scenario is modeled, all evacuees can survive before the combustion gases and heat influence their survivability.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1395
Author(s):  
Nazmul Khan ◽  
Khalid Moinuddin

The disruptions to wildland fires, such as firebreaks, roads and rivers, can limit the spread of wildfire propagating through surface or crown fire. A large forest can be separated into different zones by carefully constructing firebreaks through modification of vegetation in firebreak regions. However, the wildland fire behaviour can be unpredictable due to the presence of either wind- or buoyancy-driven flow in the fire. In this study, we aim to test the efficacy of an idealised firebreak constructed by unburned vegetation. The physics-based large eddy simulation (LES) simulation is conducted using Wildland–urban interface Fire Dynamic Simulator (WFDS). We have carefully chosen different wind velocities with low to high values, 2.5~12.5 m/s, so the different fire behaviours can be studied. The behaviour of surface fire is studied by Australian grassland vegetation, while the crown fire is represented by placing cone-shaped trees with grass underneath. With varying velocity and vegetation, four values of firebreak widths (Lc), ranging from 5~20 m, is tested for successful break distance needed for the firebreak. For each failure or successful firebreak width, we have assessed the characteristics of fire intensity, mechanism of heat transfer, heat flux, and surface temperature. It was found that with the inclusion of forest trees, the heat release rate (HRR) increased substantially due to greater amount of fuel involved. The non-dimensional Byram’s convective number (NC) was calculated, which justifies simulated heat flux and fire characteristics. For each case, HRR, total heat fluxes, total preheat flux, total preheat radiation and convective heat flux, surface temperature and fire propagation mode are presented in the details. Some threshold heat flux was observed on the far side of the firebreak and further studies are needed to identify them conclusively.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Wira Setiawan ◽  
Distyan Kotanjungan

Based on statistical data in recent years, there are still quite a number of ship accidents due to fires, including on passenger ships. The water mist system is a fire suppression system that allows it to be used in the engine room with the advantage that it can keep the heat production rate low during the extinguishing process and can be operated earlier than the CO2 system. The research is conducted by using fire dynamic simulator in the engine room of a 300 GT ferry ro-ro passenger to compare the heat release rate of fire without an extinguishing system, an existing CO2 system, and a water mist system. The result shows that the CO2 fire suppression system reduces the heat release rate more rapidly to the decay phase at 375 seconds while the water mist takes more than 900 seconds. However, the fully developed phase of the water mist suppression system occurs more quickly than CO2 because the sprinklers are activated shortly after a fire occurs. Unlike water mist, the CO2 system is activated at 60 seconds so that the pre-combustion, growth, flashover, and fully developed phases are at the same HRR and time as the natural one.


2019 ◽  
Vol 111 ◽  
pp. 01090
Author(s):  
Essam E. Khalil ◽  
Hatem Kayed Haridy ◽  
Eslam Said Abdelghany Ahmed ◽  
Ahmed Ashraf Mohamed

Smoke is one of the most dangerous factors in aircraft hangar in case of fire. As it causes reduce in visibility and deaths due to high temperature or toxicity also prevents applying evacuation plan for workers. This study present numerical analysis for improving traditional system of ventilation system to manage smoke produced due to push-back vehicle on fire at hangar. By studying effect of changing extraction and supply rates, the number of extraction and supply fans, and the arrangement of extraction and supply fans on the visibility, temperature and air velocity at human level to insure not to exceed limits stated by NFPA 130[1] to apply evacuation plan for workers. The study is performed using Fire dynamic simulator to simulate 16 case studies in the hangar of airports in Brandenburg. The hangar has the outer dimensions of 83.40 m width and 77.60 m depth and thus an inner area of approx. 6,472 m2. The hangar has a medium interior height of approximately 18.20 m. The results show that using extraction fans with rate (ACH) double the supply rate for the traditional ventilation system gives very good results in controlling the smoke. As well as, decreasing the number of supply fans will make the smoke spread rate inside the hangar lower, which helps to control the smoke spread of fire in less time.


2017 ◽  
Vol 30 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Easir A Khan ◽  
Mohammad Abir Ahmed ◽  
Emamul Haque Khan ◽  
Suvash C Majumder

Fire accident in a shopping mall, garments factory and other labor intensive industries nowadays has become a common incident in Bangladesh and poses a great threat to life, facilities and economy of our country. In this work, fire and evacuation simulation was performed for a single stored shopping complex utilizing computational fluid dynamic techniques. Fire Dynamic Simulator with evacuation (FDS+Evac) software was used to simulate a shopping mall fire and study the effects of fire on the emergency egress process of people. The shopping mall of area 64 m2 comprises of seven rooms with a pool fire at the center of the mall is modeled for simulation. The total evacuation time (TET) for a fixed population density were estimated with the change of heat release rate, soot yield, soot density and the design pattern or geometry of shopping mall. The evacuation of agents in different time and different design pattern of the mall has been assessed using the data obtained from the simulation. FDS+Evac provides an integrating platform where the interaction between fire growth and evacuees can be taken into account by simultaneous simulation allowing a full coupling of the fire conditions and human behavior. This makes FDS is an effective tool for simulating large and high density crowds where the movement dynamics of evacuees is affected by the crowd pressure. Full scale fire experiment is often quite difficult to study the fine and crowds evacuation behavior. This paper illustrates a promising application of fire dynamic simulator (FDS+Evac) for fire and evacuation modeling to predict the total evacuation time.Journal of Chemical Engineering, Vol. 30, No. 1, 2017: 32-36


Sign in / Sign up

Export Citation Format

Share Document