single image
Recently Published Documents


TOTAL DOCUMENTS

4047
(FIVE YEARS 1754)

H-INDEX

91
(FIVE YEARS 22)

2022 ◽  
Vol 4 ◽  
Author(s):  
Ziyan Yang ◽  
Leticia Pinto-Alva ◽  
Franck Dernoncourt ◽  
Vicente Ordonez

People are able to describe images using thousands of languages, but languages share only one visual world. The aim of this work is to use the learned intermediate visual representations from a deep convolutional neural network to transfer information across languages for which paired data is not available in any form. Our work proposes using backpropagation-based decoding coupled with transformer-based multilingual-multimodal language models in order to obtain translations between any languages used during training. We particularly show the capabilities of this approach in the translation of German-Japanese and Japanese-German sentence pairs, given a training data of images freely associated with text in English, German, and Japanese but for which no single image contains annotations in both Japanese and German. Moreover, we demonstrate that our approach is also generally useful in the multilingual image captioning task when sentences in a second language are available at test time. The results of our method also compare favorably in the Multi30k dataset against recently proposed methods that are also aiming to leverage images as an intermediate source of translations.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 275
Author(s):  
Jun-Seok Yun ◽  
Seok-Bong Yoo

Among various developments in the field of computer vision, single image super-resolution of images is one of the most essential tasks. However, compared to the integer magnification model for super-resolution, research on arbitrary magnification has been overlooked. In addition, the importance of single image super-resolution at arbitrary magnification is emphasized for tasks such as object recognition and satellite image magnification. In this study, we propose a model that performs arbitrary magnification while retaining the advantages of integer magnification. The proposed model extends the integer magnification image to the target magnification in the discrete cosine transform (DCT) spectral domain. The broadening of the DCT spectral domain results in a lack of high-frequency components. To solve this problem, we propose a high-frequency attention network for arbitrary magnification so that high-frequency information can be restored. In addition, only high-frequency components are extracted from the image with a mask generated by a hyperparameter in the DCT domain. Therefore, the high-frequency components that have a substantial impact on image quality are recovered by this procedure. The proposed framework achieves the performance of an integer magnification and correctly retrieves the high-frequency components lost between the arbitrary magnifications. We experimentally validated our model’s superiority over state-of-the-art models.


Author(s):  
Lumin Liu

Removing undesired re ection from a single image is in demand for computational photography. Re ection removal methods are gradually effective because of the fast development of deep neural networks. However, current results of re ection removal methods usually leave salient re ection residues due to the challenge of recognizing diverse re ection patterns. In this paper, we present a one-stage re ection removal framework with an end-to-end manner that considers both low-level information correlation and efficient feature separation. Our approach employs the criss-cross attention mechanism to extract low-level features and to efficiently enhance contextual correlation. To thoroughly remove re ection residues in the background image, we punish the similar texture feature by contrasting the parallel feature separa- tion networks, and thus unrelated textures in the background image could be progressively separated during model training. Experiments on both real-world and synthetic datasets manifest our approach can reach the state-of-the-art effect quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document