kinetic isotope effects
Recently Published Documents


TOTAL DOCUMENTS

1554
(FIVE YEARS 69)

H-INDEX

59
(FIVE YEARS 4)

mSphere ◽  
2021 ◽  
Author(s):  
Shurong Liu ◽  
Man-Young Jung ◽  
Shasha Zhang ◽  
Michael Wagner ◽  
Holger Daims ◽  
...  

Nitrification is an important nitrogen cycle process in terrestrial and aquatic environments. The discovery of comammox has changed the view that canonical AOA, AOB, and NOB are the only chemolithoautotrophic organisms catalyzing nitrification.


2021 ◽  
Author(s):  
Molly J. McBride ◽  
Mrutyunjay A. Nair ◽  
Debangsu Sil ◽  
Jeffrey W. Slater ◽  
Monica Neugebauer ◽  
...  

ABSTRACTThe enzyme BesC from the β-ethynyl-L-serine biosynthetic pathway in Streptomyces cattleya fragments 4-chloro-L-lysine (produced from L-Lysine by BesD) to ammonia, formaldehyde, and 4-chloro-L-allylglycine and can analogously fragment L-Lys itself. BesC belongs to the emerging family of O2-activating non-heme-diiron enzymes with the "heme-oxygenase-like" protein fold (HDOs). Here we show that binding of L-Lys or an analog triggers capture of O2 by the protein’s diiron(II) cofactor to form a blue µ-peroxodiiron(III) intermediate analogous to those previously characterized in two other HDOs, the olefin-installing fatty acid decarboxylase, UndA, and the guanidino-N-oxygenase domain of SznF. The ∼ 5- and ∼ 30-fold faster decay of the intermediate in reactions with 4-thia-L-Lys and (4RS)-chloro-DL-lysine than in the reaction with L-Lys itself, and the primary deuterium kinetic isotope effects (D-KIEs) on decay of the intermediate and production of L-allylglycine in the reaction with 4,4,5,5-[2H]-L-Lys, imply that the peroxide intermediate or a successor complex with which it reversibly interconverts initiates the oxidative fragmentation by abstracting hydrogen from C4. Surprisingly, the sluggish substrate L-Lys can dissociate after triggering the intermediate to form, thereby allowing one of the better substrates to bind and react. Observed linkage between Fe(II) and substrate binding suggests that the triggering event involves a previously documented (in SznF) ordering of the dynamic HDO architecture that contributes one of the iron sites, a hypothesis consistent with the observation that the diiron(III) product cluster produced upon decay of the intermediate spontaneously degrades, as it has been shown to do in all other HDOs studied to date.


ACS Omega ◽  
2021 ◽  
Author(s):  
Michael R. Klosterman ◽  
Erik J. Oerter ◽  
Amanda L. Deinhart ◽  
Suvankar Chakraborty ◽  
Michael J. Singleton ◽  
...  

2021 ◽  
Author(s):  
Sharath Chandra Mallojjala ◽  
Rahul Sakar ◽  
Rachael W. Karugu ◽  
Madhu Sudan Manna ◽  
Santanu Mukherjee ◽  
...  

ABSTRACT: Experimental 13C kinetic isotope effects (KIEs) and DFT calculations are used to evaluate the mecha-nism and the origin of enantioselectivity in the C(sp2)‒H alkylative desymmetrization of cyclopentene-1,3-diones using nitroalkanes as the alkylating agent. An unusual combination of an inverse (~0.980) and a normal (~1.030) KIE is observed on the bond-forming carbon atoms of the cyclopentene-1,3-dione and nitroalkane, respectively. These data provide strong support for a mechanism involving reversible carbon-carbon bond-formation followed by rate- and enantioselectivity-determining nitro-group elimination. The theoretical free energy profile and predicted KIEs indicate that this elimination event occurs via an E1cB pathway. The origin of remote stereocontrol is evaluated by distortion-interaction and SAPT0 analyses of the enantiomeric E1cB transition states.


2021 ◽  
Author(s):  
Juliet macharia ◽  
Chetan Joshi ◽  
Joseph Izzo ◽  
Victor Wambua ◽  
Sungjin Kim ◽  
...  

Abstract: Experimental and theoretical 13C kinetic isotope effects are utilized to obtain atomistic insight into the catalytic mechanism of the Pd(PPh3)4 catalyzed Suzuki-Miyaura reaction of aryl halides and aryl boronic acids. Under catalytic conditions, we establish that oxidative addition of aryl bromides occurs to a 12-electron monoligated palladium complex (Pd(PPh3)). For aryl iodides, the first irreversible step in the catalytic cycle precedes oxidative addition and is shown to be binding of the iodoarene to Pd(PPh3). Our results suggest that the commonly proposed oxidative addition to the 14-electron Pd(PPh3)2 complex can occur only in the presence of excess added ligand or under stoichiometric conditions. The transmetalation step, under catalytic conditions, is shown to proceed via a tetracoordinate boronate (8B4) intermediate with a Pd-O-B linkage.


ACS Catalysis ◽  
2021 ◽  
pp. 8211-8225
Author(s):  
Michał Glanowski ◽  
Patrycja Wójcik ◽  
Magdalena Procner ◽  
Tomasz Borowski ◽  
Dawid Lupa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document