fuel flow rate
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 22)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ridvan Oruc ◽  
Ozlem Sahin ◽  
Tolga Baklacioglu

Purpose The purpose of this paper is to create a new fuel flow rate model using cuckoo search algorithm (CSA) for the descending stage of the flight. Design/methodology/approach Using the actual flight data record data of the B737-800 aircraft, a new fuel flow rate model has been developed for this aircraft type. The created model is to predict the fuel flow rate with high accuracy depending on the altitude and true airspeed. In addition, the CSA fuel flow rate model was used to calculate the fuel consumption for the point merge system, which is used for combining the initial approach to the final approach at Istanbul Airport, the largest airport of Turkey. Findings As a result of the analysis, the correlation coefficient value is found as 0.996858 for Flight 1, 0.998548 for Flight 2, 0.995363 and 0.997351 for Flight 3 and Flight 4, respectively. The values that are so close to 1 indicate that the model predicts the real fuel flow rate data with high accuracy. Practical implications This model is considered to be useful in air traffic management decision support systems, aircraft performance models, models used for trajectory prediction and strategies used by the aviation community to reduce fuel consumption and related emissions. Originality/value The importance of this study lies in the fact that to the best of the authors’ knowledge, it is the first fuel flow rate model developed using CSA for the descent stage in the existing literature; the data set used is real values.


Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 73
Author(s):  
Asep Kadarohman ◽  
Fitri Khoerunnisa ◽  
Syazwana Sapee ◽  
Ratnaningsih Eko Sardjono ◽  
Izuan Izzudin ◽  
...  

A study on the application of oxygenated turpentine oil as a bio-additive in diesel fuel was conducted. The purpose of this research was to investigate the effect of oxygenated turpentine oil additive in diesel fuel on the performance and emission characteristics in diesel engines. Oxygenated turpentine oil is obtained from the oxidation process of turpentine oil. In this experimental study, the influences of oxygenated turpentine oil-diesel blended fuel OT0.2 (0.2% vol oxygenated turpentine oil and 99.8% vol diesel) were compared with pure diesel on engine performance, and emission characteristics were examined in a one-cylinder four-stroke CI engine. The test was performed at two engine loads (25% and 50%) and seven engine speeds (from 1200–2400 rpm with intervals of 200 rpm). The physiochemical characteristics of test fuels were acquired. The engine indicated power, indicated torque, fuel flow rate, and emissions (carbon dioxide, CO2; carbon monoxide, CO; and nitrogen oxide, NOX) were examined. The results revealed that the engine power shows slight increments of 0.7–1.1%, whereas the engine torque slightly decreased with oxygenated turpentine usage compared to pure diesel in most conditions. Furthermore, a reduction in NOX emission decreased by about 0.3–66% with the addition of oxygenated turpentine in diesel compared to diesel. However, usage of OT0.2 decreased fuel flow rate in most speeds at low load but gave a similar value to diesel at 50% load. CO emissions slightly increased with an average of 1.2% compared to diesel while CO2 emissions increased up to 37.5% than diesel. The high-water content, low cetane number, and low heating value of oxygenated turpentine oil were the reasons for the inverse effect found in the engine performances.


2021 ◽  
Vol 2100 (1) ◽  
pp. 012017
Author(s):  
A A Firsov ◽  
N S Kolosov

Abstract Plasma-assisted combustion approach is well known for organizing stable ignition and flame holding in supersonic flows in model scramjet combustion chambers. In this work, a new geometry of pylon equipped by electrodes relative to developed earlier was proposed and experimentally investigated. Stable ignition and flame holding were obtained over a wide range of fuel flow rate and discharge currents. Reducing of the energy input in comparison with the previously considered configurations was also demonstrated.


2021 ◽  
Vol 6 (2) ◽  
pp. 31-50
Author(s):  
Bismil Rabeta ◽  
Mohammad A.F Ulhaq ◽  
Aswan Tajuddin ◽  
Agus Sugiharto

A turboprop engine is a hybrid engine that delivers thrust or jet thrust and also drives the propeller. This is basically similar to a turbojet except the turbine works through the main shaft which is connected to the reduction gear to rotate the propeller in front of the engine. This research was conducted to determine the development of engine performance in thermodynamic analysis so as to know the value of each parameter on a engine that has been developing for 20 to 50 years with different engine manufacturing. So that in this study a comparison of the thermodynamic analysis of the TPE-331, PT6A-42 and H85-200 engines was carried out. In the TPE331-10, PT6A-42, and H85-200 turboprop engines the value of fuel to air ratio and shaft work increases with increasing altitude while compressor work, fuel flow rate, shaft power, propeller thrust, jet thrust, total thrust, equivalent engine power and ESFC decrease with increasing altitude. Furthermore, the turbine's working value is relatively stable as the altitude increases. After that, the value of compressor work and turbine work on the PT6A-42 engine was greater than that of the TPE331-10, and H85-200 engines. However, the value of the fuel to air ratio, fuel flow rate, shaft power, jet thrust, equivalent engine power and ESFC on the H85-200 engine was greater than the TPE331-10 and PT6A engines. Furthermore, at sea level, the value of the axle, propeller thrust, and total thrust on the H85-200 engine is greater than that of the TPE331-10 and PT6A-42 engines but at an altitude of 25,000 ft, the PT6A-4 engine has a greater value than that of the TPE331-10 and PT6A-42 engines. TPE331-10, and H85-200 engines.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3649
Author(s):  
Francisco Velásquez-SanMartín ◽  
Xabier Insausti ◽  
Marta Zárraga-Rodríguez ◽  
Jesús Gutiérrez-Gutiérrez

In this paper we propose a mathematical model for the fuel consumption analysis during aircraft cruise. A closed-form formula that expresses the aircraft’s weight variation over time, and hence, the fuel flow rate, is obtained as a result. Furthermore, a closed-form expression of the aircraft’s main performance parameters is also obtained. We compare the values of such parameters computed by using the Piano-X software and computed by using our mathematical model. Simulation results confirm that our mathematical model provides results very close to reality. Finally, the closed-form formula of the fuel flow rate provided by our model is used to improve the calculation of the carbon dioxide emissions for four example routes, which, unlike here, are usually obtained under the assumption of a constant value of the fuel flow rate.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ridvan Oruc ◽  
Tolga Baklacioglu

Purpose The purpose of this paper is to create a new fuel flow rate model for the descent phase of the flight using particle swarm optimization (PSO). Design/methodology/approach A new fuel flow rate model was developed for the descent phase of the B737-800 aircraft, which is frequently used in commercial air transport using PSO method. For the analysis, the actual flight data records (FDRs) data containing the fuel flow rate, speed, altitude, engine speed, time and many more data were used. In this regard, an empirical formula has been created that gives real fuel flow rate values as a function of altitude and true airspeed. In addition, in the fuel flow rate predictions made for the descent phase of the specified aircraft, a different model has been created that can be used without any optimization process when FDR data are not available for a specific aircraft take-off weight condition. Findings The error analysis applied to the models showed that both models predict real fuel flow rate values with high precision. Practical implications Because of the high accuracy of the PSO model, it is thought to be useful in air traffic management, decision support systems, models used for trajectory prediction, aircraft performance models, strategies used to reduce fuel consumption and emissions because of fuel consumption. Originality/value This study is the first fuel flow rate model for descent flight using PSO algorithm. The use of real FDR data in the analysis shows the originality of this study.


2021 ◽  
Vol 247 ◽  
pp. 01008
Author(s):  
O Negri ◽  
T Abram

Molten Salt Reactors are Gen-IV reactors that use liquid fuel. Fluid fuel allows continuous removal of fission gases as well as batch fuel reprocessing. With these control mechanisms the system can be sustained within the desired operating temperature range and required power output. These methods rely on the presence of a chemical processing plant on-site that adds complexity. This also creates a risk of processing plant unavailability due to faults, emergency downtime or maintenance. The work considers variation of fuel salt flow rate in Molten Salt Reactors as a means of controlling reactor operation without using reprocessing. The analysis is performed using the Molten Salt Fast Reactor as an example. An extended version of the SERPENT Monte-Carlo transport code coupled with OpenFOAM generic platform were used for capturing delayed neutron drift, decay heat, gaseous fission product removal, calculating fuel salt velocity vectors and the fuel temperature distribution. The two models were coupled via a script that accounted for reactivity insertion between time steps and the changes caused in the fission power. Results confirm that, while operating at constant power, the difference between fuel inlet and outlet temperatures increase as the flow rate decreases. Burnup analysis has shown that while the average fuel temperature continues to reduce with time, the difference between inlet and outlet temperatures can be controlled by varying the flow rate while maintaining constant power. Finally, the variation in the fuel flow rate has been shown to extend the reactor operating time with no insertion of additional fissile inventory.


Author(s):  
Daniel Sherwin ◽  
Jesse Dees

Abstract A fuel and engine management system have been successively applied to a 4.5L spark-ignition gaseous-fueled engine used for stationary power generation applications up to 80 kW. The system operates on low-pressure commercial grade natural gas or liquid propane gas and governs engine speed at either 1500 or 1800 rpm, for generator frequencies of 50 Hz and 60 Hz respectively. The fuel and engine management system consist of an engine control module, an electronically controlled fuel mixer, a fuel pressure sensor, and other supporting sensors/actuators. This new system replaces a legacy of fixed-orifice metering or vacuum-actuated-valve mechanical mixer designs. This new system allows for closed-loop control of stoichiometric combustion that meets both performance and emissions requirements without the need for a fuel pressure regulator within the genset frame. It also allows a single fuel system assembly to be used on all 4.5L engines regardless of fuel type (LP/NG) or nominal speed (50/60Hz), as these are now selected with standard J1939 CAN protocol messages from the genset controller. This paper reviews the development aspects for the new fuel system on the 4.5L engine. The electronic-actuated fuel mixer system offers a wider range of fuel flow control compared to mechanical-actuated mixers, this results in better air-fuel control due to variations in fuel quality, low fuel supply pressure and changing ambient conditions. The range of fuel control is result of the different mixer valve construction and control. The fuel metering valve is a butterfly type and is controlled from a stepper motor. The valve controls the fuel flow rate just before the fuel mixes with the combustion air passing thought a venturi. Lag in fuel flow, typical of low supply pressure and low restriction / signal venturi, is corrected for using a feedforward control strategy based on genset electrical load. The mixer sizing and flow bench measurements for calibration, will be reviewed. The ECM uses a speed-density air flow model, along with fuel supply and air filter pressure, to determine the best mixer valve position. The engine air flow model is used for determining venturi flow and the resulting mixer vacuum signal, but a final calibration correction was created with hot wire-anemometer-flow meters on a running engine. A long-term fuel trim is also applied to the mixer position, but unlike a fuel-injection system which corrects volumetric efficiency based on known fuel flow rate and HEGO sensor feedback, this mixer control strategy learns a steady-state mixer correction or offset. The entire control strategy was developed within a Simulink model and auto code generation tools were used to create final ECM C and machine code. The development of the mixer and ECM control strategy will be detailed herein.


2020 ◽  
pp. 1-19
Author(s):  
T. Baklacioglu

ABSTRACT A first attempt is made to use recently developed, non-conventional Artificial Neural Network (ANN) models with Multilayer Perceptron (MLP), Radial Basis Function (RBF) and Adaptive Neuro-Fuzzy Interference System (ANFIS) architectures to predict the fuel flow rate of a commercial aircraft using real data obtained from Flight Data Records (FDRs) of the cruise, climb and descent phases. The training of the architectures with a single hidden layer is performed by utilising the Delta-Bar-Delta (DBD), Conjugate Gradient (CG) and Quickprop (QP) algorithms. The optimum network topologies are sought by varying the number of processing elements in the hidden layer of the networks using a trial-and-error method. An evaluation of the approximate fuel intake values against the ideal fuel intake data from the FDRs indicates a good fit for all three ANN models. Thus, more accurate fuel intake estimations can be obtained by applying the RBF-ANN model during the climb and descent flight stages, whereas the MLP-ANN model is more effective for the cruise phase. The best accuracy obtained in terms of the linear correlation coefficient is 0.99988, 0.91946 and 0.95252 for the climb, cruise and descent phase, respectively.


Sign in / Sign up

Export Citation Format

Share Document