astrocyte activation
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 116)

H-INDEX

39
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yu Yao ◽  
Dongxiao Qu ◽  
Xiaoping Jing ◽  
Yuxiang Jia ◽  
Qi Zhong ◽  
...  

The gene kcnma1 encodes the α-subunit of high-conductance calcium- and voltage-dependent K+ (BK) potassium channel. With the development of generation gene sequencing technology, many KCNMA1 mutants have been identified and are more closely related to generalized epilepsy and paroxysmal dyskinesia. Here, we performed a genetic screen of 26 patients with febrile seizures and identified a novel mutation of KCNMA1 (E155Q). Electrophysiological characterization of different KCNMA1 mutants in HEK 293T cells, the previously-reported R458T and E884K variants (not yet determined), as well as the newly-found E155Q variant, revealed that the current density amplitude of all the above variants was significantly smaller than that of the wild-type (WT) channel. All the above variants caused a positive shift of the I-V curve and played a role through the loss-of-function (LOF) mechanism. Moreover, the β4 subunit slowed down the activation of the E155Q mutant. Then, we used kcnma1 knockout (BK KO) mice as the overall animal model of LOF mutants. It was found that BK KO mice had spontaneous epilepsy, motor impairment, autophagic dysfunction, abnormal electroencephalogram (EEG) signals, as well as possible anxiety and cognitive impairment. In addition, we performed transcriptomic analysis on the hippocampus and cortex of BK KO and WT mice. We identified many differentially expressed genes (DEGs). Eight dysregulated genes [i.e., (Gfap and Grm3 associated with astrocyte activation) (Alpl and Nlrp10 associated with neuroinflammation) (Efna5 and Reln associated with epilepsy) (Cdkn1a and Nr4a1 associated with autophagy)] were validated by RT-PCR, which showed a high concordance with transcriptomic analysis. Calcium imaging results suggested that BK might regulate the autophagy pathway from TRPML1. In conclusion, our study indicated that newly-found point E155Q resulted in a novel loss-of-function variant and the dysregulation of gene expression, especially astrocyte activation, neuroinflammation and autophagy, might be the molecular mechanism of BK-LOF meditated epilepsy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xuankang Wang ◽  
Zhihao Zhang ◽  
Zhijie Zhu ◽  
Zhuowen Liang ◽  
Xiaoshuang Zuo ◽  
...  

After spinal cord injury (SCI), reactive astrocytes can be classified into two distinctive phenotypes according to their different functions: neurotoxic (A1) astrocytes and neuroprotective (A2) astrocytes. Our previous studies proved that photobiomodulation (PBM) can promote motor function recovery and improve tissue repair after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM contributes to repair after SCI by regulating the activation of astrocytes. Male rats subjected to clip-compression SCI were treated with PBM for two consecutive weeks, and the results showed that recovery of motor function was improved, the lesion cavity size was reduced, and the number of neurons retained was increased. We determined the time course of A1/A2 astrocyte activation after SCI by RNA sequencing (RNA-Seq) and verified that PBM inhibited A1 astrocyte activation and promoted A2 astrocyte activation at 7 days postinjury (dpi) and 14 dpi. Subsequently, potential signaling pathways related to A1/A2 astrocyte activation were identified by GO function analysis and KEGG pathway analysis and then studied in animal experiments and preliminarily analyzed in cultured astrocytes. Next, we observed that the expression of basic fibroblast growth factor (bFGF) and transforming growth factor-β (TGF-β) was upregulated by PBM and that both factors contributed to the transformation of A1/A2 astrocytes in a dose-dependent manner. Finally, we found that PBM reduced the neurotoxicity of A1 astrocytes to dorsal root ganglion (DRG) neurons. In conclusion, PBM can promote better recovery after SCI, which may be related to the transformation of A1/A2 reactive astrocytes.


Neuropeptides ◽  
2021 ◽  
pp. 102209
Author(s):  
Beatriz Soares-Silva ◽  
José Ivo Araújo Beserra-Filho ◽  
Pamela Maria Araújo Morera ◽  
Ana Claudia Custódio-Silva ◽  
Amanda Maria-Macêdo ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yi-Hung Chen ◽  
Sheng-Yun Xie ◽  
Chao-Wei Chen ◽  
Dah-Yuu Lu

Abstract Background Post-traumatic stress disorder (PTSD) is a trauma-related disorder that is associated with pro-inflammatory activation and neurobiological impairments in the brain and leads to a series of affective-like behaviors. Electroacupuncture (EA) has been proposed as a clinically useful therapy for several brain diseases. However, the potential role of EA treatment in PTSD and its molecular and cellular mechanisms has rarely been investigated. Methods We used an established preclinical social defeat stress mouse model to study whether EA treatment modulates PTSD-like symptoms and understand its underlying mechanisms. To this end, male C57BL/6 mice were subjected to repeated social defeat stress (RSDS) for 6 consecutive days to induce symptoms of PTSD and treated with EA at Baihui (GV 20) and Dazhui (GV 14) acupoints. Results The stimulation of EA, but not needle insertion at Baihui (GV 20) and Dazhui (GV 14) acupoints effectively improved PTSD-like behaviors such as, social avoidance and anxiety-like behaviors. However, EA stimulation at the bilateral Tianzong (SI11) acupoints did not affect the PTSD-like behaviors obtained by RSDS. EA stimulation also markedly inhibited astrocyte activation in both the dorsal and ventral hippocampi of RSDS-treated mice. Using next-generation sequencing analysis, our results showed that EA stimulation attenuated RSDS-enhanced lipocalin 2 expression in the hippocampus. Importantly, using double-staining immunofluorescence, we observed that the increased lipocalin 2 expression in astrocytes by RSDS was also reduced by EA stimulation. In addition, intracerebroventricular injection of mouse recombinant lipocalin 2 protein in the lateral ventricles provoked social avoidance, anxiety-like behaviors, and the activation of astrocytes in the hippocampus. Interestingly, the overexpression of lipocalin 2 in the brain also altered the expression of stress-related genes, including monoamine oxidase A, monoamine oxidase B, mineralocorticoid receptor, and glucocorticoid receptor in the hippocampus. Conclusions This study suggests that the treatment of EA at Baihui (GV 20) and Dazhui (GV 14) acupoints improves RSDS-induced social avoidance, anxiety-like behaviors, astrocyte activation, and lipocalin 2 expression. Furthermore, our findings also indicate that lipocalin 2 expression in the brain may be an important biomarker for the development of PTSD-related symptoms.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Francesca Lazzara ◽  
Rosario Amato ◽  
Chiara Bianca Maria Platania ◽  
Federica Conti ◽  
Tsung-Han Chou ◽  
...  

Abstract Background Glaucoma is an optic neuropathy characterized by loss of function and death of retinal ganglion cells (RGCs), leading to irreversible vision loss. Neuroinflammation is recognized as one of the causes of glaucoma, and currently no treatment is addressing this mechanism. We aimed to investigate the anti-inflammatory and neuroprotective effects of 1,25(OH)2D3 (1α,25-dihydroxyvitamin D3, calcitriol), in a genetic model of age-related glaucomatous neurodegeneration (DBA/2J mice). Methods DBA/2J mice were randomized to 1,25(OH)2D3 or vehicle treatment groups. Pattern electroretinogram, flash electroretinogram, and intraocular pressure were recorded weekly. Immunostaining for RBPMS, Iba-1, and GFAP was carried out on retinal flat mounts to assess retinal ganglion cell density and quantify microglial and astrocyte activation, respectively. Molecular biology analyses were carried out to evaluate retinal expression of pro-inflammatory cytokines, pNFκB-p65, and neuroprotective factors. Investigators that analysed the data were blind to experimental groups, which were unveiled after graph design and statistical analysis, that were carried out with GraphPad Prism. Several statistical tests and approaches were used: the generalized estimated equations (GEE) analysis, t-test, and one-way ANOVA. Results DBA/2J mice treated with 1,25(OH)2D3 for 5 weeks showed improved PERG and FERG amplitudes and reduced RGCs death, compared to vehicle-treated age-matched controls. 1,25(OH)2D3 treatment decreased microglial and astrocyte activation, as well as expression of inflammatory cytokines and pNF-κB-p65 (p < 0.05). Moreover, 1,25(OH)2D3-treated DBA/2J mice displayed increased mRNA levels of neuroprotective factors (p < 0.05), such as BDNF. Conclusions 1,25(OH)2D3 protected RGCs preserving retinal function, reducing inflammatory cytokines, and increasing expression of neuroprotective factors. Therefore, 1,25(OH)2D3 could attenuate the retinal damage in glaucomatous patients and warrants further clinical evaluation for the treatment of optic neuropathies.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1187
Author(s):  
Zhi-Hong Wen ◽  
Shi-Ying Huang ◽  
Hsiao-Mei Kuo ◽  
Chao-Ting Chen ◽  
Nan-Fu Chen ◽  
...  

Introduction: Angiogenesis in the central nervous system is visible in animal models of neuroinflammation and bone cancer pain. However, whether spinal angiogenesis exists and contributes to central sensitization in neuropathic pain remains unclear. This study analyzes the impact of angiogenesis on spinal neuroinflammation in neuropathic pain. Methods: Rats with chronic constriction injury (CCI) to the sciatic nerve underwent the implantation of an intrathecal catheter. Fumagillin or vascular endothelial growth factor-A antibody (anti-VEGF-A) was administered intrathecally. Nociceptive behaviors, cytokine immunoassay, Western blot, and immunohistochemical analysis assessed the effect of angiogenesis inhibition on CCI-induced neuropathic pain. Results: VEGF, cluster of differentiation 31 (CD31), and von Willebrand factor (vWF) expressions increased after CCI in the ipsilateral lumbar spinal cord compared to that in the contralateral side of CCI and control rats from post-operative day (POD) 7 to 28, with a peak at POD 14. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 concentrations, but not IL-10 levels, also increased in the ipsilateral spinal cord after CCI. Fumagillin and anti-VEGF-A reduced CCI-induced thermal hyperalgesia from POD 5 to 14 and mechanical allodynia from POD 3 to 14. Fumagillin reduced CCI-upregulated expressions of angiogenic factors and astrocytes. Furthermore, fumagillin decreased TNF-α and IL-6 amounts and increased IL-10 levels at POD 7 and 14, but not IL-1β concentrations. Conclusions: Fumagillin significantly ameliorates CCI-induced nociceptive sensitization, spinal angiogenesis, and astrocyte activation. Our results suggest that angiogenesis inhibitor treatment suppresses peripheral neuropathy-induced central angiogenesis, neuroinflammation, astrocyte activation, and neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document