image representations
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 71)

H-INDEX

29
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 380
Author(s):  
Ha-Yeong Yoon ◽  
Jung-Hwa Kim ◽  
Jin-Woo Jeong

The demand for wheelchairs has increased recently as the population of the elderly and patients with disorders increases. However, society still pays less attention to infrastructure that can threaten the wheelchair user, such as sidewalks with cracks/potholes. Although various studies have been proposed to recognize such challenges, they mainly depend on RGB images or IMU sensors, which are sensitive to outdoor conditions such as low illumination, bad weather, and unavoidable vibrations, resulting in unsatisfactory and unstable performance. In this paper, we introduce a novel system based on various convolutional neural networks (CNNs) to automatically classify the condition of sidewalks using images captured with depth and infrared modalities. Moreover, we compare the performance of training CNNs from scratch and the transfer learning approach, where the weights learned from the natural image domain (e.g., ImageNet) are fine-tuned to the depth and infrared image domain. In particular, we propose applying the ResNet-152 model pre-trained with self-supervised learning during transfer learning to leverage better image representations. Performance evaluation on the classification of the sidewalk condition was conducted with 100% and 10% of training data. The experimental results validate the effectiveness and feasibility of the proposed approach and bring future research directions.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Chaowei Duan ◽  
Yiliu Liu ◽  
Changda Xing ◽  
Zhisheng Wang

An efficient method for the infrared and visible image fusion is presented using truncated Huber penalty function smoothing and visual saliency based threshold optimization. The method merges complementary information from multimodality source images into a more informative composite image in two-scale domain, in which the significant objects/regions are highlighted and rich feature information is preserved. Firstly, source images are decomposed into two-scale image representations, namely, the approximate and residual layers, using truncated Huber penalty function smoothing. Benefiting from the edge- and structure-preserving characteristics, the significant objects and regions in the source images are effectively extracted without halo artifacts around the edges. Secondly, a visual saliency based threshold optimization fusion rule is designed to fuse the approximate layers aiming to highlight the salient targets in infrared images and remain the high-intensity regions in visible images. The sparse representation based fusion rule is adopted to fuse the residual layers with the goal of acquiring rich detail texture information. Finally, combining the fused approximate and residual layers reconstructs the fused image with more natural visual effects. Sufficient experimental results demonstrate that the proposed method can achieve comparable or superior performances compared with several state-of-the-art fusion methods in visual results and objective assessments.


2021 ◽  
Author(s):  
Ji Zhang ◽  
Yibo Wang ◽  
Eric Donarski ◽  
Andreas Gahlmann

Accurate detection and segmentation of single cells in three-dimensional (3D) fluorescence time-lapse images is essential for measuring individual cell behaviors in large bacterial communities called biofilms. Recent progress in machine-learning-based image analysis is providing this capability with every increasing accuracy. Leveraging the capabilities of deep convolutional neural networks (CNNs), we recently developed bacterial cell morphometry in 3D (BCM3D), an integrated image analysis pipeline that combines deep learning with conventional image analysis to detect and segment single biofilm-dwelling cells in 3D fluorescence images. While the first release of BCM3D (BCM3D 1.0) achieved state-of-the-art 3D bacterial cell segmentation accuracies, low signal-to-background ratios (SBRs) and images of very dense biofilms remained challenging. Here, we present BCM3D 2.0 to address this challenge. BCM3D 2.0 is completely complementary to the approach utilized in BCM3D 1.0. Instead of training CNNs to perform voxel classification, we trained CNNs to translate 3D fluorescence images into intermediate 3D image representations that are, when combined appropriately later, more amenable to conventional mathematical image processing than a single experimental image. Using this approach, improved segmentation results are obtained even for very low SBRs and/or high cell density biofilm images. The improved cell segmentation accuracies in turn enable improved accuracies of tracking individual cells through 3D space and time, which opens the door to investigating time-dependent phenomena in bacterial biofilms at the cellular level.


2021 ◽  
Author(s):  
Hong-Yu Zhou ◽  
Xiaoyu Chen ◽  
Yinghao Zhang ◽  
Ruibang Luo ◽  
Liansheng Wang ◽  
...  

Pre-training lays the foundation for recent successes in radiograph analysis supported by deep learning. It learns transferable image representations by conducting large-scale fully-supervised or self-supervised learning on a source domain. However, supervised pre-training requires a complex and labor intensive two-stage human-assisted annotation process while self-supervised learning cannot compete with the supervised paradigm. To tackle these issues, we propose a cross-supervised methodology named REviewing FreE-text Reports for Supervision (REFERS), which acquires free supervision signals from original radiology reports accompanying the radiographs. The proposed approach employs a vision transformer and is designed to learn joint representations from multiple views within every patient study. REFERS outperforms its transfer learning and self-supervised learning counterparts on 4 well-known X-ray datasets under extremely limited supervision. Moreover, REFERS even surpasses methods based on a source domain of radiographs with human-assisted structured labels. Thus REFERS has the potential to replace canonical pre-training methodologies.


Author(s):  
Siyuan Lu ◽  
Di Wu ◽  
Zheng Zhang ◽  
Shui-Hua Wang

The new coronavirus COVID-19 has been spreading all over the world in the last six months, and the death toll is still rising. The accurate diagnosis of COVID-19 is an emergent task as to stop the spreading of the virus. In this paper, we proposed to leverage image feature fusion for the diagnosis of COVID-19 in lung window computed tomography (CT). Initially, ResNet-18 and ResNet-50 were selected as the backbone deep networks to generate corresponding image representations from the CT images. Second, the representative information extracted from the two networks was fused by discriminant correlation analysis to obtain refined image features. Third, three randomized neural networks (RNNs): extreme learning machine, Schmidt neural network and random vector functional-link net, were trained using the refined features, and the predictions of the three RNNs were ensembled to get a more robust classification performance. Experiment results based on five-fold cross validation suggested that our method outperformed state-of-the-art algorithms in the diagnosis of COVID-19.


Author(s):  
Dominika Basaj ◽  
Witold Oleszkiewicz ◽  
Igor Sieradzki ◽  
Michał Górszczak ◽  
Barbara Rychalska ◽  
...  

Recently introduced self-supervised methods for image representation learning provide on par or superior results to their fully supervised competitors, yet the corresponding efforts to explain the self-supervised approaches lag behind. Motivated by this observation, we introduce a novel visual probing framework for explaining the self-supervised models by leveraging probing tasks employed previously in natural language processing. The probing tasks require knowledge about semantic relationships between image parts. Hence, we propose a systematic approach to obtain analogs of natural language in vision, such as visual words, context, and taxonomy. We show the effectiveness and applicability of those analogs in the context of explaining self-supervised representations. Our key findings emphasize that relations between language and vision can serve as an effective yet intuitive tool for discovering how machine learning models work, independently of data modality. Our work opens a plethora of research pathways towards more explainable and transparent AI.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiangfan Feng ◽  
Wenzheng Sun

Tourist image retrieval has attracted increasing attention from researchers. Mainly, supervised deep hash methods have significantly boosted the retrieval performance, which takes hand-crafted features as inputs and maps the high-dimensional binary feature vector to reduce feature-searching complexity. However, their performance depends on the supervised labels, but few labeled temporal and discriminative information is available in tourist images. This paper proposes an improved deep hash to learn enhanced hash codes for tourist image retrieval. It jointly determines image representations and hash functions with deep neural networks and simultaneously enhances the discriminative capability of tourist image hash codes with refined semantics of the accompanying relationship. Furthermore, we have tuned the CNN to implement end-to-end training hash mapping, calculating the semantic distance between two samples of the obtained binary codes. Experiments on various datasets demonstrate the superiority of the proposed approach compared to state-of-the-art shallow and deep hashing techniques.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3106
Author(s):  
Yogesh Kalakoti ◽  
Shashank Yadav ◽  
Durai Sundar

The utility of multi-omics in personalized therapy and cancer survival analysis has been debated and demonstrated extensively in the recent past. Most of the current methods still suffer from data constraints such as high-dimensionality, unexplained interdependence, and subpar integration methods. Here, we propose SurvCNN, an alternative approach to process multi-omics data with robust computer vision architectures, to predict cancer prognosis for Lung Adenocarcinoma patients. Numerical multi-omics data were transformed into their image representations and fed into a Convolutional Neural network with a discrete-time model to predict survival probabilities. The framework also dichotomized patients into risk subgroups based on their survival probabilities over time. SurvCNN was evaluated on multiple performance metrics and outperformed existing methods with a high degree of confidence. Moreover, comprehensive insights into the relative performance of various combinations of omics datasets were probed. Critical biological processes, pathways and cell types identified from downstream processing of differentially expressed genes suggested that the framework could elucidate elements detrimental to a patient’s survival. Such integrative models with high predictive power would have a significant impact and utility in precision oncology.


2021 ◽  
Author(s):  
Hong-Yu Zhou ◽  
Chengdi Wang ◽  
Haofeng Li ◽  
Gang Wang ◽  
Weimin Li ◽  
...  

Semi-Supervised classification and segmentation methods have been widely investigated in medical image analysis. Both approaches can improve the performance of fully-supervised methods with additional unlabeled data. However, as a fundamental task, semi-supervised object detection has not gained enough attention in the field of medical image analysis. In this paper, we propose a novel Semi-Supervised Medical image Detector (SSMD). The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent. To achieve the above idea, we develop a novel adaptive consistency cost function to regularize different components in the predictions. Moreover, we introduce heterogeneous perturbation strategies that work in both feature space and image space, so that the proposed detector is promising to produce powerful image representations and robust predictions. Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings. We also demonstrate the strength of each proposed module with comprehensive ablation studies.


Sign in / Sign up

Export Citation Format

Share Document