mussel shells
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 76)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Edward Higgins ◽  
Thomas B. Parr ◽  
Caryn C. Vaughn

Microbiomes are increasingly recognized as widespread regulators of function from individual organism to ecosystem scales. However, the manner in which animals influence the structure and function of environmental microbiomes has received considerably less attention. Using a comparative field study, we investigated the relationship between freshwater mussel microbiomes and environmental microbiomes. We used two focal species of unionid mussels, Amblema plicata and Actinonaias ligamentina, with distinct behavioral and physiological characteristics. Mussel microbiomes, those of the shell and biodeposits, were less diverse than both surface and subsurface sediment microbiomes. Mussel abundance was a significant predictor of sediment microbial community composition, but mussel species richness was not. Our data suggest that local habitat conditions which change dynamically along streams, such as discharge, water turnover, and canopy cover, work in tandem to influence environmental microbial community assemblages at discreet rather than landscape scales. Further, mussel burrowing activity and mussel shells may provide habitat for microbial communities critical to nutrient cycling in these systems.


Author(s):  
Carolina Martínez-García ◽  
Belén González-Fonteboa ◽  
Diego Carro-López ◽  
Fernando Martínez-Abella ◽  
Paulina Faria

Air lime coating mortars with mussel shells exhibit useful hygrothermal properties related to humidity and temperature regulation. Introducing mussel shell sand produces a significant increase in pore volume, changing mortar’s microstructure and reducing density. This is attributed to the flaky and irregular shape of the shell particles that present also traces of organic matter. In this work, the natural aggregate is replaced by mussel shell sand in increasing percentages of 25%, 50% and 75%. Additionally, a mortar with 0% of sand replacement is used as baseline of reference. These mortars are tested focusing in two main parameters, in first term, thermal conductivity. And also absorption and desorption cycles, at 80 and 50% relative humidity. The results are very positive for mussel shells specimens, it can be concluded that the use of mussel shell aggregates can improve the hygrothermal properties of air lime coating mortars. Another interesting result is a subjective property such as the aesthetic quality of the finishing, the results is pleasing and, combined with the promising hygrothermal properties opens a good opportunity for mussel shell mortars.


Author(s):  
Ananda Maulidha Kusumastuti ◽  
Adik Roni Setiawan ◽  
Asalina Putri Agung Shaliha ◽  
Deden Eko Wiyono ◽  
Achmad Ferdiansyah Pradana Putra

<p><em>The number of bone damage in Indonesia continues to increase. Bone implant is one of the medical treatment methods performed on bone damage. Organic and non-organic materials can be used as bone implants. Non-organic materials are stronger, but not biocompatible, while organic materials are biocompatible, but brittle. The addition of polycaprolactone polymer (PCL) can increase the mechanical strength of 3D printing bone implant filaments. Extruder melting temperature is one of the factors that affect the quality of PCL-HAp filaments for bone implants. Studies related to temperature variations in PCL-HAp materials have not been widely studied. Therefore, it is necessary to characterize 3D printing filaments with variations in the melting temperature of the extruder as bone implants from mussel shells with temperature variables of 65<sup>o</sup>C, 75<sup>o</sup>C, and 85<sup>o</sup>C. From this study, the optimum point was found at the melting extruder temperature of 75<sup>o</sup>C with the results of a diameter of 1.810 and mechanical strength which showed an increase in tensile strength and Young's modulus of PCL-HAp composite in all variables compared to pure PCL. The SEM test showed a rough surface on the filaments that could increase the proliferation and adhesion of good cells for the growth of bone tissue.</em></p>


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 45
Author(s):  
Magdalena Mititelu ◽  
Elena Moroșan ◽  
Anca Cecilia Nicoară ◽  
Ana Andreea Secăreanu ◽  
Adina Magdalena Musuc ◽  
...  

Nowadays, the use of marine by-products as precursor materials has gained great interest in the extraction and production of chemical compounds with suitable properties and possible pharmaceutical applications. The present paper presents the development of a new immediate release tablet containing calcium lactate obtained from Black Sea mussel shells. Compared with other calcium salts, calcium lactate has good solubility and bioavailability. In the pharmaceutical preparations, calcium lactate was extensively utilized as a calcium source for preventing and treating calcium deficiencies. The physical and chemical characteristics of synthesized calcium lactate were evaluated using Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis and thermal analysis. Further, the various pharmacotechnical properties of the calcium lactate obtained from mussel shells were determined in comparison with an industrial used direct compressible Calcium lactate DC (PURACAL®). The obtained results suggest that mussel shell by-products are suitable for the development of chemical compounds with potential applications in the pharmaceutical domain.


Author(s):  
Nur Maulida Safitri ◽  
Andi Rahmad Rahim ◽  
Ummul Firmani

Massive amounts of mussel shell waste are generated and wasted from the aquaculture processing sectors, resulting in environmental pollution. This material contains chitosan as a valuable compound characterized as a non-toxic structural component with several food processing applications or medicinal applications. In this research, mussel shells were processed using different solvents concentrations in several stages: demineralization, deproteination, decolourization, and deacetylation. Our result showed that the C2 samples gained a high degree of deacetylation (31.8±0.21%) with low moisture and ash content and medium weight of yield. Further research is recommended to purify chitosan using various instrumentation and assess its bioactivity.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 25
Author(s):  
Magdalena Mititelu ◽  
Gabriela Stanciu ◽  
Doina Drăgănescu ◽  
Ana Corina Ioniță ◽  
Sorinel Marius Neacșu ◽  
...  

(1) Background: The mussel (Mytilus edulis, Mytilus galloprovincialis) is the most widespread lamellibranch mollusk, being fished on all coasts of the European seas. Mussels are also widely grown in Japan, China, and Spain, especially for food purposes. This paper shows an original technique for mussel shell processing for preparation of calcium salts, such as calcium levulinate. This process involves synthesis of calcium levulinate by treatment of Mytilus galloprovincialis shells with levulinic acid. The advantage of mussel shell utilization results in more straightforward qualitative composition. Thus, the weight of the mineral component lies with calcium carbonate, which can be used for extraction of pharmaceutical preparations. (2) Methods: Shell powder was first deproteinized by calcination, then the mineral part was treated with levulinic acid. The problem of shells generally resulting from the industrialization of marine molluscs creates enough shortcomings, if one only mentions storage and handling. One of the solutions proposed by us is the capitalization of calcium from shells in the pharmaceutical industry. (3) Results: The toxicity of calcium levulinate synthesized from the mussel shells was evaluated by the method known in the scientific literature as the Constantinescu phytobiological method (using wheat kernels, Triticum vulgare Mill). Acute toxicity of calcium levulinate was evaluated; the experiments showed the low toxicity of calcium levulinate. (4) Conclusion: The experimental results highlighted calcium as the predominant element in the composition of mussel shells, which strengthens the argument of capitalizing the shells as an important natural source of calcium.


Author(s):  
G. M. Turky ◽  
Esmat Hamzawy ◽  
Gehan Bassyouny ◽  
Sayed Kenawy ◽  
Abeer A. Abd El-Aty

Abstract Synthesis and characterization of biocomposite materials of hydroxyapatite (HA) and yttrium oxide (Y2O3) were investigated. HA nanoparticles powder was obtained from mussel shells via a wet chemical precipitation routine. HA powder was doped with 1 and 2 wt% of Y2O3 . For microstructural examination, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) coupled with energy dispersive X-rays (EDX) were used. In addition, the dielectric and electrical properties and antimicrobial activities were investigated. XRD patterns reveal the crystallization of the oxyapatite. The peak intensities of pristine HA are inferior compared to the yttrium containing HA composites, thus suggesting that the addition of yttrium promotes the crystallization of HA due to the variance in their ionic radii. FT-IR shows a variation in the phosphate wavenumber, indicating the integration of yttrium into the HA matrix. SEM reveals nanorod- or worm-like crystals arose in clusters. With increasing Y2O3, from 1 to 2 wt%, the DC conductivity reduces from 16 to 9.3 nS/cm, which confirms that high amounts of Y3+ substitute Ca2+ in the HA matrix. In the high-frequency range, the AC conductivity linearly increases with increasing frequency following the universal power law. Further, antimicrobial activity results showed that the addition of yttrium in HA improves the antimicrobial effects against pathogenic bacteria and fungi. Additional research is needed to investigate the doping concentration of yttrium ions, and an anticipated property could be comprehended for several forthcoming biomedical applications


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1093
Author(s):  
Pavel Nekhoroshkov ◽  
Inga Zinicovscaia ◽  
Dmitry Nikolayev ◽  
Tatiana Lychagina ◽  
Alexey Pakhnevich ◽  
...  

A both wild and farmed mussels in natural conditions, anthropogenic inputs are usually reflected in the increase of the content of specific elements. To determine the possible effect of the elemental patterns of farmed and wild mussels (Mytilus galloprovincialis) collected in the Saldanha Bay area (South Africa) on the crystallographic texture of the shells, the content of 20 elements in shells and 24 in the soft tissue of mussels was determined by neutron activation analysis. The crystallographic texture of mussel shells was analyzed using time-of-flight neutron diffraction. The wild mussels from open ocean site live in stressful natural conditions and contain higher amounts of the majority of determined elements in comparison with mussels farmed in closed water areas with anthropogenic loadings. The changes between the maximums of the same pole figures of the three samples are in the range of variability identified for the genus Mytilus. The content of Cl, Sr, and I was the highest in mussels from the open ocean site, which is reflected by the lowest mass/length ratio. The determined crystallographic textures of mussels are relatively stable as shown in the analyzed pole figures despite the concentrations of Na, Mg, Cl, Br, Sr, and I in shells, which significantly differ for wild and farmed mussels. The stability of the crystallographic texture that we observed suggests that it can be used as a reference model, where if a very different texture is determined, increased attention to the ecological situation should be paid.


2021 ◽  
Vol 9 (10) ◽  
pp. 1087
Author(s):  
Carolina Camba ◽  
José Luis Mier ◽  
Luis Carral ◽  
María Isabel Lamas ◽  
José Carlos Álvarez ◽  
...  

This work proposes a green material for artificial reefs to be placed in Galicia (northwest Spain) taking into account the principles of circular economy and sustainability of the ecosystem. New concrete formulations for marine applications, based on cement and/or sand replacement by mussel shells, are analyzed in terms of resistance to abrasion. The interest lies in the importance of the canning industry of Galicia, which generates important quantities of shell residues with negative environmental consequences. Currently, the tests to determine the abrasion erosion resistance of concrete on hydraulic structures involve large and complex devices. According to this, an experimental test has been proposed to estimate and compare the wear resistance of these concretes and, consequently, to analyze the environmental performance of these structures. First, a numerical analysis validated with experimental data was conducted to design the test. Subsequently, experimental tests were performed using a slurry tank in which samples with conventional cement and sand were partially replaced by mussel shell. The abrasive erosion effect of concrete components was analyzed by monitoring the mass loss. It shows an asymptotic trend with respect to time that has been modeled by Generalized Additive Model (GAM) and nonlinear regression models. The results were compared to concrete containing only conventional cement and sand. Replacing sand and/or cement by different proportions of mussel shells has not significantly reduced the resistance of concrete against erosive degradation, except for the case where a high amount of sand (20 wt.%) is replaced. Its resistance against the erosive abrasion is increased, losing between 0.1072 and 0.0310 wt.% lower than common concrete. In all the remaining cases (replacements of the 5–10 wt.% of sand and cement), the effect of mussel replacement on erosive degradation is not significant. These results encourage the use of mussel shells in the composition of concrete, taking into account that we obtain the same degradation properties, even more so considering an important residue in the canning industry (and part of the seabed) that can be valorized.


Sign in / Sign up

Export Citation Format

Share Document