reproductive timing
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 42)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Emily N Black ◽  
Jarrett D Blair ◽  
Karin R.L. van der Burg ◽  
Katie E Marshall

Allochronic speciation, where reproductive isolation between populations of a species is facilitated by a difference in reproductive timing, depends on the existence of seasonality. Seasonality is strongly driven by latitude, so there may be a relationship between latitude and divergence among populations separated by life history timing. Here we explore the relationship between allochronic speciation and latitude using Hyphantria cunea (the fall webworm), a Lepidopteran defoliator with red and black colour morphs that may be undergoing an incipient allochronic speciation. We annotated >9000 community science observations of fall webworm to model colour morph phenology and differences in phenotype across North America. We also examined the physiology of two sympatric populations to determine differences in diapause intensity. We found the fall webworm is multivoltine with differing numbers of generations between colour morphs at lower latitudes, and univoltine at latitudes higher than 41°. This shift to univoltism correlated with a decline in morphological differentiation. This shows that conditions at lower latitudes facilitate greater divergence in an incipient allochronic speciation potentially due to longer reproductive seasons allowing for greater mismatches in generations. Our results demonstrate how latitude affects allochronic speciation, and how sympatric speciation along latitudinal gradients contributes to trends in global biodiversity.


2021 ◽  
Author(s):  
Abigail A. Kimmitt ◽  
Daniel J. Becker ◽  
Sara N. Diller ◽  
Nicole M. Gerlach ◽  
Kimberly A. Rosvall ◽  
...  

AbstractClimate change has driven changes in breeding phenology. Identifying the magnitude of phenological shifts and whether selection in response to climate change drives these shifts is key for determining species’ reproductive success and persistence in a changing world.We investigated reproductive timing in a primarily sedentary population of the dark-eyed junco (Junco hyemalis) over 32 years. We predicted that juncos would breed earlier in warmer springs in response to selection favouring earlier breeding.To test this prediction, we compared the annual median date for reproductive onset (i.e., egg one date) to monthly spring temperatures and examined evidence for selection favouring earlier breeding and for plasticity in timing.Egg one dates occurred earlier over time, with the timing of breeding advancing up to 24 days over the 32-year period. Breeding timing also strongly covaried with maximum April temperature. We found significant overall selection favouring earlier breeding (i.e., higher relative fitness with earlier egg one dates) that became stronger over time, but strength of selection was not predicted by temperature. Lastly, individual females exhibited plastic responses to temperature across years.Our findings provide further evidence that phenotypic plasticity plays a crucial role in driving phenological shifts in response to climate change. For multi-brooded bird populations, a warming climate might extend the breeding season and provide more opportunities to re-nest rather than drive earlier breeding in response to potential phenological mismatches. However, as plasticity will likely be insufficient for long-term survival in the face of climate change, further research in understanding the mechanisms of female reproductive timing will be essential for forecasting the effects of climate change on population persistence.


2021 ◽  
Vol 675 ◽  
pp. 1-21
Author(s):  
MA Ito ◽  
HJ Lin ◽  
MI O’Connor ◽  
M Nakaoka

Large-scale analysis along latitude or temperature gradients can be an effective method for exploring the potential roles of light and temperature in controlling seagrass phenology. In this study, we investigated effects of latitude and temperature on seagrass biomass and reproductive seasonality. Zostera japonica is an intertidal seagrass with a wide latitudinal distribution expanding from tropical to temperate zones in its native range in Asia, with an additional non-native distribution in North America. We collated available data on phenological traits (timings of peak biomass or reproduction, durations of biomass growth and reproductive season, and maximum biomass or reproductive ratio) from publications and our own observations. Traits were compared among geographic groups: Asia-tropical, Asia-temperate, and North America-temperate. We further examined relationships between traits and latitude and temperature for 3 population groups: Asian, North American, and all populations. Our analysis revealed significant variation among geographic groups in maximum biomass, peak reproductive timing, and maximum reproductive ratio, but not in other traits. Maximum biomass and peak reproductive timing for Asian and all populations were significantly correlated with latitude and temperature. Maximum biomass was highest at mid-latitudes or intermediate temperatures and decreased toward distribution range limits, and peak reproductive timing occurred later in the year at higher latitudes or cooler sites. North American populations showed shorter growth durations and greater reproductive ratios at higher latitude. Different responses observed for North American populations may reflect effects of introduction. Our study demonstrates potential variation among geographic regions and between native and non-native populations.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nicholas Dietz ◽  
Rachel Combs-Giroir ◽  
Grace Cooper ◽  
Minviluz Stacey ◽  
Carrie Miranda ◽  
...  

Abstract Background Soybean is an economically important crop which flowers predominantly in response to photoperiod. Several major loci controlling the quantitative trait for reproductive timing have been identified, of which allelic combinations at three of these loci, E1, E2, and E3, are the dominant factors driving time to flower and reproductive period. However, functional genomics studies have identified additional loci which affect reproductive timing, many of which are less understood. A better characterization of these genes will enable fine-tuning of adaptation to various production environments. Two such genes, E1La and E1Lb, have been implicated in flowering by previous studies, but their effects have yet to be assessed under natural photoperiod regimes. Results Natural and induced variants of E1La and E1Lb were identified and introgressed into lines harboring either E1 or its early flowering variant, e1-as. Lines were evaluated for days to flower and maturity in a Maturity Group (MG) III production environment. These results revealed that variation in E1La and E1Lb promoted earlier flowering and maturity, with stronger effects in e1-as background than in an E1 background. The geographic distribution of E1La alleles among wild and cultivated soybean revealed that natural variation in E1La likely contributed to northern expansion of wild soybean, while breeding programs in North America exploited e1-as to develop cultivars adapted to northern latitudes. Conclusion This research identified novel alleles of the E1 paralogues, E1La and E1Lb, which promote flowering and maturity under natural photoperiods. These loci represent sources of genetic variation which have been under-utilized in North American breeding programs to control reproductive timing, and which can be valuable additions to a breeder’s molecular toolbox.


Ardeola ◽  
2021 ◽  
Vol 69 (1) ◽  
Author(s):  
Justine Le Vaillant ◽  
Jaime Potti ◽  
Carlos Camacho ◽  
David Canal ◽  
Jesús Martínez-Padilla

Author(s):  
Jiseon Lim ◽  
Jun Kim ◽  
Junho Lee

Abstract Caenorhabditis elegans hermaphrodites first produce a limited number of sperm cells, before their germline switches to oogenesis. Production of progeny then ensues until sperm is depleted. Male production in the self-progeny of hermaphrodites occurs following X-chromosome nondisjunction during gametogenesis, and in the reference strain increases with age of the hermaphrodite parent. To enhance our understanding of the reproductive timecourse in C. elegans, we measured and compared progeny production and male proportion during the early and late reproductive periods of hermaphrodites for 96 wild C. elegans strains. We found that the two traits exhibited natural phenotypic variation with few outliers and a similar reproductive timing pattern as previous reports. Progeny number and male proportion were not correlated in the wild strains, implying that wild strains with a large brood size did not produce males at a higher rate. We also identified loci and candidate genetic variants significantly associated with male-production rate in the late and total reproductive periods. Our results provide an insight into life-history traits in wild C. elegans strains.


2021 ◽  
Author(s):  
Rudy Brogi ◽  
Enrico Merli ◽  
Stefano Grignolio ◽  
Roberta Chirichella ◽  
Elisa Bottero ◽  
...  

Abstract On a population-level, individual plasticity in reproductive phenology can provoke either anticipations or delays in the average reproductive timing in response to environmental changes. However, a rigid reliance on photoperiodism can constraint such plastic responses in populations inhabiting temperate latitudes. The regulation of breeding season length may represent a further tool for populations facing changing environments. Nonetheless, this skill was reported only for equatorial, non-photoperiodic populations. Our goal was to evaluate whether species living in temperate regions and relying on photoperiodism to trigger their reproduction may also be able to regulate breeding season length. During 10 years, we collected 2,500 female reproductive traits of a mammal model species (wild boar Sus scrofa) and applied a novel analytical approach to reproductive patterns in order to observe population-level variations of reproductive timing and synchrony under different weather and resources availability conditions. Under favorable conditions, breeding seasons were anticipated and population synchrony increased (i.e., shorter breeding seasons). Conversely, poor conditions induced delayed and less synchronous (i.e., longer) breeding seasons. The potential to regulate breeding season length depending on environmental conditions may entail a high resilience of the population reproductive patterns against environmental changes, as highlighted by the fact that almost all mature females were reproductive every year.


2021 ◽  
Author(s):  
Cheng Shi ◽  
Coleen T Murphy

The reproductive system regulates the aging of the soma through competing anti- and pro-aging signals. Germline removal extends somatic lifespan through conserved pathways including Insulin, mTOR, and steroid signaling, while germline hyperactivity cuts lifespan short through mechanisms that remain elusive. Here, we show that mating-induced germline hyperactivity leads to the dramatic downregulation of piRNAs, which in turn releases silencing of their targets, including the Hedgehog-like ligand encoding genes wrt-1 and wrt-10, ultimately causing somatic collapse and early death. Germline-produced Hedgehog signals require PTR-6 and PTR-16 receptors for mating-induced body shrinking and lifespan shortening. Our results reveal an unconventional role of the piRNA pathway in transcriptional regulation of Hedgehog signaling, as well as a new role of Hedgehog signaling in the regulation of longevity and somatic maintenance. Our data suggest that Hedgehog signaling is controlled by the tunable piRNA pathway to encode the previously unknown germline-to-soma pro-aging signal. Mating-induced downregulation of piRNAs in the germline and subsequent signaling to the soma via the Hedgehog pathway enables the animal to tune its somatic resource allocation in response to germline needs to optimize reproductive timing and survival.


Sign in / Sign up

Export Citation Format

Share Document