heterogeneous wireless systems
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 976 ◽  
Author(s):  
Amjad Iqbal ◽  
Amor Smida ◽  
Lway Faisal Abdulrazak ◽  
Omar A. Saraereh ◽  
Nazih Khaddaj Mallat ◽  
...  

A low-profile (0.21 λ g × 0.35 λ g × 0.02 λ g ) and a simply-structured frequency-switchable antenna with eight frequency choices is presented in this paper. The radiating structure (monopole) is printed on a 1.6-mm thicker, commercially-available substrate of FR-4 ( ϵ r = 4.4, tan δ = 0.020). Specifically, it uses three PIN diodes in the designated places to shift the resonant bands of the antenna. The antenna operates at four different modes depending on the ON and OFF states of the PIN diodes. While in each mode, the antenna covers two unique frequencies (Mode 1 = 1.8 and 3.29 GHz, Mode 2 = 2.23 and 3.9 GHz, Mode 3 = 2.4 and 4.55 GHz, and Mode 4 = 2.78 and 5.54 GHz). The performance results show that the proposed antenna scheme explores significant gain (>1.5 dBi in all modes) and reasonable efficiency (>82% in all modes) for each mode. Using a high-frequency structure simulator (HFSS), the switchable antenna is designed and optimized. The fabricated model along with the PIN diode and biasing network is tested experimentally to validate the simulation results. The proposed antenna may also be combined in compact and heterogeneous radio frequency (RF) front-ends because of its small geometry and efficient utilization of the frequency spectrum.


Author(s):  
Mohamed Lahby ◽  
Ayoub Essouiri ◽  
Abderrahim Sekkaki

The next generation of mobile wireless communications represents a heterogeneous environment which integrates variety of network generation like third generation (3G), fourth generation (4G), and fifth generation (5G). The major challenge in this heterogeneous environment is to decide which access point to use when multiple networks are available. Process of roaming mobile user from one technology to anther different is called vertical handover. In this chapter, the authors propose a new mechanism based on graph theory and cost function in order to determine the best path for the end user in terms of quality of service (QoS) when the vertical handover process is needed. Then, they investigate the impact of some existing weighting methods in order to determine the suitable method which can be coupled with the cost function. The experiments evaluation by using Mininet emulator demonstrate that the proposed approach can achieve a significant improvement concerning four QoS metrics: throughput, packet lost, packet delay, and packer jitter for two services FTP and video streaming.


Sign in / Sign up

Export Citation Format

Share Document